Step |
Hyp |
Ref |
Expression |
1 |
|
breq2 |
|
2 |
|
oveq1 |
|
3 |
2
|
eleq1d |
|
4 |
1 3
|
imbi12d |
|
5 |
4
|
ralbidv |
|
6 |
|
breq2 |
|
7 |
|
oveq1 |
|
8 |
7
|
eleq1d |
|
9 |
6 8
|
imbi12d |
|
10 |
9
|
ralbidv |
|
11 |
|
breq2 |
|
12 |
|
oveq1 |
|
13 |
12
|
eleq1d |
|
14 |
11 13
|
imbi12d |
|
15 |
14
|
ralbidv |
|
16 |
|
breq2 |
|
17 |
|
oveq1 |
|
18 |
17
|
eleq1d |
|
19 |
16 18
|
imbi12d |
|
20 |
19
|
ralbidv |
|
21 |
|
n0sge0 |
|
22 |
21
|
biantrud |
|
23 |
|
n0sno |
|
24 |
|
0sno |
|
25 |
|
sletri3 |
|
26 |
23 24 25
|
sylancl |
|
27 |
22 26
|
bitr4d |
|
28 |
|
oveq2 |
|
29 |
|
subsid |
|
30 |
24 29
|
ax-mp |
|
31 |
|
0n0s |
|
32 |
30 31
|
eqeltri |
|
33 |
28 32
|
eqeltrdi |
|
34 |
27 33
|
biimtrdi |
|
35 |
34
|
rgen |
|
36 |
|
breq1 |
|
37 |
|
oveq2 |
|
38 |
37
|
eleq1d |
|
39 |
36 38
|
imbi12d |
|
40 |
39
|
cbvralvw |
|
41 |
|
n0sno |
|
42 |
|
peano2no |
|
43 |
|
subsid1 |
|
44 |
41 42 43
|
3syl |
|
45 |
|
peano2n0s |
|
46 |
44 45
|
eqeltrd |
|
47 |
|
oveq2 |
|
48 |
47
|
eleq1d |
|
49 |
46 48
|
syl5ibrcom |
|
50 |
49
|
2a1dd |
|
51 |
50
|
adantr |
|
52 |
|
breq1 |
|
53 |
|
oveq2 |
|
54 |
53
|
eleq1d |
|
55 |
52 54
|
imbi12d |
|
56 |
55
|
rspcv |
|
57 |
23
|
adantl |
|
58 |
|
1sno |
|
59 |
58
|
a1i |
|
60 |
41
|
adantr |
|
61 |
57 59 60
|
slesubaddd |
|
62 |
60 57 59
|
subsubs2d |
|
63 |
60 59 57
|
addsubsassd |
|
64 |
62 63
|
eqtr4d |
|
65 |
64
|
eleq1d |
|
66 |
61 65
|
imbi12d |
|
67 |
66
|
biimpd |
|
68 |
56 67
|
syl9r |
|
69 |
|
n0s0m1 |
|
70 |
69
|
adantl |
|
71 |
51 68 70
|
mpjaod |
|
72 |
71
|
ralrimdva |
|
73 |
40 72
|
biimtrid |
|
74 |
5 10 15 20 35 73
|
n0sind |
|
75 |
|
breq1 |
|
76 |
|
oveq2 |
|
77 |
76
|
eleq1d |
|
78 |
75 77
|
imbi12d |
|
79 |
78
|
rspcva |
|
80 |
74 79
|
sylan2 |
|
81 |
|
n0sge0 |
|
82 |
|
n0sno |
|
83 |
82
|
adantl |
|
84 |
|
n0sno |
|
85 |
84
|
adantr |
|
86 |
83 85
|
subsge0d |
|
87 |
81 86
|
imbitrid |
|
88 |
80 87
|
impbid |
|