Metamath Proof Explorer


Theorem n0subs

Description: Subtraction of non-negative surreal integers. (Contributed by Scott Fenton, 26-May-2025)

Ref Expression
Assertion n0subs M 0s N 0s M s N N - s M 0s

Proof

Step Hyp Ref Expression
1 breq2 x = 0 s z s x z s 0 s
2 oveq1 x = 0 s x - s z = 0 s - s z
3 2 eleq1d x = 0 s x - s z 0s 0 s - s z 0s
4 1 3 imbi12d x = 0 s z s x x - s z 0s z s 0 s 0 s - s z 0s
5 4 ralbidv x = 0 s z 0s z s x x - s z 0s z 0s z s 0 s 0 s - s z 0s
6 breq2 x = y z s x z s y
7 oveq1 x = y x - s z = y - s z
8 7 eleq1d x = y x - s z 0s y - s z 0s
9 6 8 imbi12d x = y z s x x - s z 0s z s y y - s z 0s
10 9 ralbidv x = y z 0s z s x x - s z 0s z 0s z s y y - s z 0s
11 breq2 x = y + s 1 s z s x z s y + s 1 s
12 oveq1 x = y + s 1 s x - s z = y + s 1 s - s z
13 12 eleq1d x = y + s 1 s x - s z 0s y + s 1 s - s z 0s
14 11 13 imbi12d x = y + s 1 s z s x x - s z 0s z s y + s 1 s y + s 1 s - s z 0s
15 14 ralbidv x = y + s 1 s z 0s z s x x - s z 0s z 0s z s y + s 1 s y + s 1 s - s z 0s
16 breq2 x = N z s x z s N
17 oveq1 x = N x - s z = N - s z
18 17 eleq1d x = N x - s z 0s N - s z 0s
19 16 18 imbi12d x = N z s x x - s z 0s z s N N - s z 0s
20 19 ralbidv x = N z 0s z s x x - s z 0s z 0s z s N N - s z 0s
21 n0sge0 z 0s 0 s s z
22 21 biantrud z 0s z s 0 s z s 0 s 0 s s z
23 n0sno z 0s z No
24 0sno 0 s No
25 sletri3 z No 0 s No z = 0 s z s 0 s 0 s s z
26 23 24 25 sylancl z 0s z = 0 s z s 0 s 0 s s z
27 22 26 bitr4d z 0s z s 0 s z = 0 s
28 oveq2 z = 0 s 0 s - s z = 0 s - s 0 s
29 subsid 0 s No 0 s - s 0 s = 0 s
30 24 29 ax-mp 0 s - s 0 s = 0 s
31 0n0s 0 s 0s
32 30 31 eqeltri 0 s - s 0 s 0s
33 28 32 eqeltrdi z = 0 s 0 s - s z 0s
34 27 33 biimtrdi z 0s z s 0 s 0 s - s z 0s
35 34 rgen z 0s z s 0 s 0 s - s z 0s
36 breq1 z = x z s y x s y
37 oveq2 z = x y - s z = y - s x
38 37 eleq1d z = x y - s z 0s y - s x 0s
39 36 38 imbi12d z = x z s y y - s z 0s x s y y - s x 0s
40 39 cbvralvw z 0s z s y y - s z 0s x 0s x s y y - s x 0s
41 n0sno y 0s y No
42 peano2no y No y + s 1 s No
43 subsid1 y + s 1 s No y + s 1 s - s 0 s = y + s 1 s
44 41 42 43 3syl y 0s y + s 1 s - s 0 s = y + s 1 s
45 peano2n0s y 0s y + s 1 s 0s
46 44 45 eqeltrd y 0s y + s 1 s - s 0 s 0s
47 oveq2 z = 0 s y + s 1 s - s z = y + s 1 s - s 0 s
48 47 eleq1d z = 0 s y + s 1 s - s z 0s y + s 1 s - s 0 s 0s
49 46 48 syl5ibrcom y 0s z = 0 s y + s 1 s - s z 0s
50 49 2a1dd y 0s z = 0 s x 0s x s y y - s x 0s z s y + s 1 s y + s 1 s - s z 0s
51 50 adantr y 0s z 0s z = 0 s x 0s x s y y - s x 0s z s y + s 1 s y + s 1 s - s z 0s
52 breq1 x = z - s 1 s x s y z - s 1 s s y
53 oveq2 x = z - s 1 s y - s x = y - s z - s 1 s
54 53 eleq1d x = z - s 1 s y - s x 0s y - s z - s 1 s 0s
55 52 54 imbi12d x = z - s 1 s x s y y - s x 0s z - s 1 s s y y - s z - s 1 s 0s
56 55 rspcv z - s 1 s 0s x 0s x s y y - s x 0s z - s 1 s s y y - s z - s 1 s 0s
57 23 adantl y 0s z 0s z No
58 1sno 1 s No
59 58 a1i y 0s z 0s 1 s No
60 41 adantr y 0s z 0s y No
61 57 59 60 slesubaddd y 0s z 0s z - s 1 s s y z s y + s 1 s
62 60 57 59 subsubs2d y 0s z 0s y - s z - s 1 s = y + s 1 s - s z
63 60 59 57 addsubsassd y 0s z 0s y + s 1 s - s z = y + s 1 s - s z
64 62 63 eqtr4d y 0s z 0s y - s z - s 1 s = y + s 1 s - s z
65 64 eleq1d y 0s z 0s y - s z - s 1 s 0s y + s 1 s - s z 0s
66 61 65 imbi12d y 0s z 0s z - s 1 s s y y - s z - s 1 s 0s z s y + s 1 s y + s 1 s - s z 0s
67 66 biimpd y 0s z 0s z - s 1 s s y y - s z - s 1 s 0s z s y + s 1 s y + s 1 s - s z 0s
68 56 67 syl9r y 0s z 0s z - s 1 s 0s x 0s x s y y - s x 0s z s y + s 1 s y + s 1 s - s z 0s
69 n0s0m1 z 0s z = 0 s z - s 1 s 0s
70 69 adantl y 0s z 0s z = 0 s z - s 1 s 0s
71 51 68 70 mpjaod y 0s z 0s x 0s x s y y - s x 0s z s y + s 1 s y + s 1 s - s z 0s
72 71 ralrimdva y 0s x 0s x s y y - s x 0s z 0s z s y + s 1 s y + s 1 s - s z 0s
73 40 72 biimtrid y 0s z 0s z s y y - s z 0s z 0s z s y + s 1 s y + s 1 s - s z 0s
74 5 10 15 20 35 73 n0sind N 0s z 0s z s N N - s z 0s
75 breq1 z = M z s N M s N
76 oveq2 z = M N - s z = N - s M
77 76 eleq1d z = M N - s z 0s N - s M 0s
78 75 77 imbi12d z = M z s N N - s z 0s M s N N - s M 0s
79 78 rspcva M 0s z 0s z s N N - s z 0s M s N N - s M 0s
80 74 79 sylan2 M 0s N 0s M s N N - s M 0s
81 n0sge0 N - s M 0s 0 s s N - s M
82 n0sno N 0s N No
83 82 adantl M 0s N 0s N No
84 n0sno M 0s M No
85 84 adantr M 0s N 0s M No
86 83 85 subsge0d M 0s N 0s 0 s s N - s M M s N
87 81 86 imbitrid M 0s N 0s N - s M 0s M s N
88 80 87 impbid M 0s N 0s M s N N - s M 0s