Metamath Proof Explorer


Theorem n0sge0

Description: A non-negative integer is greater than or equal to zero. (Contributed by Scott Fenton, 15-Apr-2025)

Ref Expression
Assertion n0sge0 A 0s 0 s s A

Proof

Step Hyp Ref Expression
1 breq2 n = 0 s 0 s s n 0 s s 0 s
2 breq2 n = m 0 s s n 0 s s m
3 breq2 n = m + s 1 s 0 s s n 0 s s m + s 1 s
4 breq2 n = A 0 s s n 0 s s A
5 0sno 0 s No
6 slerflex 0 s No 0 s s 0 s
7 5 6 ax-mp 0 s s 0 s
8 5 a1i m 0s 0 s s m 0 s No
9 n0sno m 0s m No
10 9 adantr m 0s 0 s s m m No
11 peano2no m No m + s 1 s No
12 9 11 syl m 0s m + s 1 s No
13 12 adantr m 0s 0 s s m m + s 1 s No
14 simpr m 0s 0 s s m 0 s s m
15 9 addsridd m 0s m + s 0 s = m
16 15 adantr m 0s 0 s s m m + s 0 s = m
17 5 a1i 0 s No
18 1sno 1 s No
19 18 a1i 1 s No
20 0slt1s 0 s < s 1 s
21 20 a1i 0 s < s 1 s
22 17 19 21 sltled 0 s s 1 s
23 22 mptru 0 s s 1 s
24 5 a1i m 0s 0 s No
25 18 a1i m 0s 1 s No
26 24 25 9 sleadd2d m 0s 0 s s 1 s m + s 0 s s m + s 1 s
27 23 26 mpbii m 0s m + s 0 s s m + s 1 s
28 27 adantr m 0s 0 s s m m + s 0 s s m + s 1 s
29 16 28 eqbrtrrd m 0s 0 s s m m s m + s 1 s
30 8 10 13 14 29 sletrd m 0s 0 s s m 0 s s m + s 1 s
31 30 ex m 0s 0 s s m 0 s s m + s 1 s
32 1 2 3 4 7 31 n0sind A 0s 0 s s A