| Step | Hyp | Ref | Expression | 
						
							| 1 |  | breq2 |  |-  ( n = 0s -> ( 0s <_s n <-> 0s <_s 0s ) ) | 
						
							| 2 |  | breq2 |  |-  ( n = m -> ( 0s <_s n <-> 0s <_s m ) ) | 
						
							| 3 |  | breq2 |  |-  ( n = ( m +s 1s ) -> ( 0s <_s n <-> 0s <_s ( m +s 1s ) ) ) | 
						
							| 4 |  | breq2 |  |-  ( n = A -> ( 0s <_s n <-> 0s <_s A ) ) | 
						
							| 5 |  | 0sno |  |-  0s e. No | 
						
							| 6 |  | slerflex |  |-  ( 0s e. No -> 0s <_s 0s ) | 
						
							| 7 | 5 6 | ax-mp |  |-  0s <_s 0s | 
						
							| 8 | 5 | a1i |  |-  ( ( m e. NN0_s /\ 0s <_s m ) -> 0s e. No ) | 
						
							| 9 |  | n0sno |  |-  ( m e. NN0_s -> m e. No ) | 
						
							| 10 | 9 | adantr |  |-  ( ( m e. NN0_s /\ 0s <_s m ) -> m e. No ) | 
						
							| 11 |  | peano2no |  |-  ( m e. No -> ( m +s 1s ) e. No ) | 
						
							| 12 | 9 11 | syl |  |-  ( m e. NN0_s -> ( m +s 1s ) e. No ) | 
						
							| 13 | 12 | adantr |  |-  ( ( m e. NN0_s /\ 0s <_s m ) -> ( m +s 1s ) e. No ) | 
						
							| 14 |  | simpr |  |-  ( ( m e. NN0_s /\ 0s <_s m ) -> 0s <_s m ) | 
						
							| 15 | 9 | addsridd |  |-  ( m e. NN0_s -> ( m +s 0s ) = m ) | 
						
							| 16 | 15 | adantr |  |-  ( ( m e. NN0_s /\ 0s <_s m ) -> ( m +s 0s ) = m ) | 
						
							| 17 | 5 | a1i |  |-  ( T. -> 0s e. No ) | 
						
							| 18 |  | 1sno |  |-  1s e. No | 
						
							| 19 | 18 | a1i |  |-  ( T. -> 1s e. No ) | 
						
							| 20 |  | 0slt1s |  |-  0s  | 
						
							| 21 | 20 | a1i |  |-  ( T. -> 0s  | 
						
							| 22 | 17 19 21 | sltled |  |-  ( T. -> 0s <_s 1s ) | 
						
							| 23 | 22 | mptru |  |-  0s <_s 1s | 
						
							| 24 | 5 | a1i |  |-  ( m e. NN0_s -> 0s e. No ) | 
						
							| 25 | 18 | a1i |  |-  ( m e. NN0_s -> 1s e. No ) | 
						
							| 26 | 24 25 9 | sleadd2d |  |-  ( m e. NN0_s -> ( 0s <_s 1s <-> ( m +s 0s ) <_s ( m +s 1s ) ) ) | 
						
							| 27 | 23 26 | mpbii |  |-  ( m e. NN0_s -> ( m +s 0s ) <_s ( m +s 1s ) ) | 
						
							| 28 | 27 | adantr |  |-  ( ( m e. NN0_s /\ 0s <_s m ) -> ( m +s 0s ) <_s ( m +s 1s ) ) | 
						
							| 29 | 16 28 | eqbrtrrd |  |-  ( ( m e. NN0_s /\ 0s <_s m ) -> m <_s ( m +s 1s ) ) | 
						
							| 30 | 8 10 13 14 29 | sletrd |  |-  ( ( m e. NN0_s /\ 0s <_s m ) -> 0s <_s ( m +s 1s ) ) | 
						
							| 31 | 30 | ex |  |-  ( m e. NN0_s -> ( 0s <_s m -> 0s <_s ( m +s 1s ) ) ) | 
						
							| 32 | 1 2 3 4 7 31 | n0sind |  |-  ( A e. NN0_s -> 0s <_s A ) |