Step |
Hyp |
Ref |
Expression |
1 |
|
breq2 |
|- ( n = 0s -> ( 0s <_s n <-> 0s <_s 0s ) ) |
2 |
|
breq2 |
|- ( n = m -> ( 0s <_s n <-> 0s <_s m ) ) |
3 |
|
breq2 |
|- ( n = ( m +s 1s ) -> ( 0s <_s n <-> 0s <_s ( m +s 1s ) ) ) |
4 |
|
breq2 |
|- ( n = A -> ( 0s <_s n <-> 0s <_s A ) ) |
5 |
|
0sno |
|- 0s e. No |
6 |
|
slerflex |
|- ( 0s e. No -> 0s <_s 0s ) |
7 |
5 6
|
ax-mp |
|- 0s <_s 0s |
8 |
5
|
a1i |
|- ( ( m e. NN0_s /\ 0s <_s m ) -> 0s e. No ) |
9 |
|
n0sno |
|- ( m e. NN0_s -> m e. No ) |
10 |
9
|
adantr |
|- ( ( m e. NN0_s /\ 0s <_s m ) -> m e. No ) |
11 |
|
peano2no |
|- ( m e. No -> ( m +s 1s ) e. No ) |
12 |
9 11
|
syl |
|- ( m e. NN0_s -> ( m +s 1s ) e. No ) |
13 |
12
|
adantr |
|- ( ( m e. NN0_s /\ 0s <_s m ) -> ( m +s 1s ) e. No ) |
14 |
|
simpr |
|- ( ( m e. NN0_s /\ 0s <_s m ) -> 0s <_s m ) |
15 |
9
|
addsridd |
|- ( m e. NN0_s -> ( m +s 0s ) = m ) |
16 |
15
|
adantr |
|- ( ( m e. NN0_s /\ 0s <_s m ) -> ( m +s 0s ) = m ) |
17 |
5
|
a1i |
|- ( T. -> 0s e. No ) |
18 |
|
1sno |
|- 1s e. No |
19 |
18
|
a1i |
|- ( T. -> 1s e. No ) |
20 |
|
0slt1s |
|- 0s |
21 |
20
|
a1i |
|- ( T. -> 0s |
22 |
17 19 21
|
sltled |
|- ( T. -> 0s <_s 1s ) |
23 |
22
|
mptru |
|- 0s <_s 1s |
24 |
5
|
a1i |
|- ( m e. NN0_s -> 0s e. No ) |
25 |
18
|
a1i |
|- ( m e. NN0_s -> 1s e. No ) |
26 |
24 25 9
|
sleadd2d |
|- ( m e. NN0_s -> ( 0s <_s 1s <-> ( m +s 0s ) <_s ( m +s 1s ) ) ) |
27 |
23 26
|
mpbii |
|- ( m e. NN0_s -> ( m +s 0s ) <_s ( m +s 1s ) ) |
28 |
27
|
adantr |
|- ( ( m e. NN0_s /\ 0s <_s m ) -> ( m +s 0s ) <_s ( m +s 1s ) ) |
29 |
16 28
|
eqbrtrrd |
|- ( ( m e. NN0_s /\ 0s <_s m ) -> m <_s ( m +s 1s ) ) |
30 |
8 10 13 14 29
|
sletrd |
|- ( ( m e. NN0_s /\ 0s <_s m ) -> 0s <_s ( m +s 1s ) ) |
31 |
30
|
ex |
|- ( m e. NN0_s -> ( 0s <_s m -> 0s <_s ( m +s 1s ) ) ) |
32 |
1 2 3 4 7 31
|
n0sind |
|- ( A e. NN0_s -> 0s <_s A ) |