Description: Surreal less than or equal is transitive. (Contributed by Scott Fenton, 8-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | slttrd.1 | |- ( ph -> A e. No ) |
|
slttrd.2 | |- ( ph -> B e. No ) |
||
slttrd.3 | |- ( ph -> C e. No ) |
||
sletrd.4 | |- ( ph -> A <_s B ) |
||
sletrd.5 | |- ( ph -> B <_s C ) |
||
Assertion | sletrd | |- ( ph -> A <_s C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slttrd.1 | |- ( ph -> A e. No ) |
|
2 | slttrd.2 | |- ( ph -> B e. No ) |
|
3 | slttrd.3 | |- ( ph -> C e. No ) |
|
4 | sletrd.4 | |- ( ph -> A <_s B ) |
|
5 | sletrd.5 | |- ( ph -> B <_s C ) |
|
6 | sletr | |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A <_s B /\ B <_s C ) -> A <_s C ) ) |
|
7 | 1 2 3 6 | syl3anc | |- ( ph -> ( ( A <_s B /\ B <_s C ) -> A <_s C ) ) |
8 | 4 5 7 | mp2and | |- ( ph -> A <_s C ) |