Metamath Proof Explorer


Theorem sletrd

Description: Surreal less-than or equal is transitive. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Hypotheses slttrd.1 âŠĒ ( 𝜑 → ðī ∈ No )
slttrd.2 âŠĒ ( 𝜑 → ðĩ ∈ No )
slttrd.3 âŠĒ ( 𝜑 → ðķ ∈ No )
sletrd.4 âŠĒ ( 𝜑 → ðī â‰Īs ðĩ )
sletrd.5 âŠĒ ( 𝜑 → ðĩ â‰Īs ðķ )
Assertion sletrd ( 𝜑 → ðī â‰Īs ðķ )

Proof

Step Hyp Ref Expression
1 slttrd.1 âŠĒ ( 𝜑 → ðī ∈ No )
2 slttrd.2 âŠĒ ( 𝜑 → ðĩ ∈ No )
3 slttrd.3 âŠĒ ( 𝜑 → ðķ ∈ No )
4 sletrd.4 âŠĒ ( 𝜑 → ðī â‰Īs ðĩ )
5 sletrd.5 âŠĒ ( 𝜑 → ðĩ â‰Īs ðķ )
6 sletr âŠĒ ( ( ðī ∈ No ∧ ðĩ ∈ No ∧ ðķ ∈ No ) → ( ( ðī â‰Īs ðĩ ∧ ðĩ â‰Īs ðķ ) → ðī â‰Īs ðķ ) )
7 1 2 3 6 syl3anc âŠĒ ( 𝜑 → ( ( ðī â‰Īs ðĩ ∧ ðĩ â‰Īs ðķ ) → ðī â‰Īs ðķ ) )
8 4 5 7 mp2and âŠĒ ( 𝜑 → ðī â‰Īs ðķ )