Metamath Proof Explorer
Description: Surreal less than or equal is transitive. (Contributed by Scott
Fenton, 8-Dec-2021)
|
|
Ref |
Expression |
|
Hypotheses |
slttrd.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
|
|
slttrd.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
|
|
slttrd.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
|
|
sletrd.4 |
⊢ ( 𝜑 → 𝐴 ≤s 𝐵 ) |
|
|
sletrd.5 |
⊢ ( 𝜑 → 𝐵 ≤s 𝐶 ) |
|
Assertion |
sletrd |
⊢ ( 𝜑 → 𝐴 ≤s 𝐶 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
slttrd.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
slttrd.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
|
slttrd.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
4 |
|
sletrd.4 |
⊢ ( 𝜑 → 𝐴 ≤s 𝐵 ) |
5 |
|
sletrd.5 |
⊢ ( 𝜑 → 𝐵 ≤s 𝐶 ) |
6 |
|
sletr |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ( 𝐴 ≤s 𝐵 ∧ 𝐵 ≤s 𝐶 ) → 𝐴 ≤s 𝐶 ) ) |
7 |
1 2 3 6
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 ≤s 𝐵 ∧ 𝐵 ≤s 𝐶 ) → 𝐴 ≤s 𝐶 ) ) |
8 |
4 5 7
|
mp2and |
⊢ ( 𝜑 → 𝐴 ≤s 𝐶 ) |