| Step |
Hyp |
Ref |
Expression |
| 1 |
|
n0subs |
|- ( ( M e. NN0_s /\ N e. NN0_s ) -> ( M <_s N <-> ( N -s M ) e. NN0_s ) ) |
| 2 |
|
n0sno |
|- ( N e. NN0_s -> N e. No ) |
| 3 |
2
|
adantl |
|- ( ( M e. NN0_s /\ N e. NN0_s ) -> N e. No ) |
| 4 |
|
n0sno |
|- ( M e. NN0_s -> M e. No ) |
| 5 |
4
|
adantr |
|- ( ( M e. NN0_s /\ N e. NN0_s ) -> M e. No ) |
| 6 |
3 5
|
subseq0d |
|- ( ( M e. NN0_s /\ N e. NN0_s ) -> ( ( N -s M ) = 0s <-> N = M ) ) |
| 7 |
6
|
necon3bid |
|- ( ( M e. NN0_s /\ N e. NN0_s ) -> ( ( N -s M ) =/= 0s <-> N =/= M ) ) |
| 8 |
7
|
bicomd |
|- ( ( M e. NN0_s /\ N e. NN0_s ) -> ( N =/= M <-> ( N -s M ) =/= 0s ) ) |
| 9 |
1 8
|
anbi12d |
|- ( ( M e. NN0_s /\ N e. NN0_s ) -> ( ( M <_s N /\ N =/= M ) <-> ( ( N -s M ) e. NN0_s /\ ( N -s M ) =/= 0s ) ) ) |
| 10 |
5 3
|
sltlend |
|- ( ( M e. NN0_s /\ N e. NN0_s ) -> ( M ( M <_s N /\ N =/= M ) ) ) |
| 11 |
|
elnns |
|- ( ( N -s M ) e. NN_s <-> ( ( N -s M ) e. NN0_s /\ ( N -s M ) =/= 0s ) ) |
| 12 |
11
|
a1i |
|- ( ( M e. NN0_s /\ N e. NN0_s ) -> ( ( N -s M ) e. NN_s <-> ( ( N -s M ) e. NN0_s /\ ( N -s M ) =/= 0s ) ) ) |
| 13 |
9 10 12
|
3bitr4d |
|- ( ( M e. NN0_s /\ N e. NN0_s ) -> ( M ( N -s M ) e. NN_s ) ) |