| Step |
Hyp |
Ref |
Expression |
| 1 |
|
n0subs2 |
|- ( ( M e. NN0_s /\ N e. NN0_s ) -> ( M ( N -s M ) e. NN_s ) ) |
| 2 |
|
nnsge1 |
|- ( ( N -s M ) e. NN_s -> 1s <_s ( N -s M ) ) |
| 3 |
|
1sno |
|- 1s e. No |
| 4 |
3
|
a1i |
|- ( ( M e. NN0_s /\ N e. NN0_s ) -> 1s e. No ) |
| 5 |
|
simpr |
|- ( ( M e. NN0_s /\ N e. NN0_s ) -> N e. NN0_s ) |
| 6 |
|
n0sno |
|- ( N e. NN0_s -> N e. No ) |
| 7 |
5 6
|
syl |
|- ( ( M e. NN0_s /\ N e. NN0_s ) -> N e. No ) |
| 8 |
|
n0sno |
|- ( M e. NN0_s -> M e. No ) |
| 9 |
8
|
adantr |
|- ( ( M e. NN0_s /\ N e. NN0_s ) -> M e. No ) |
| 10 |
7 9
|
subscld |
|- ( ( M e. NN0_s /\ N e. NN0_s ) -> ( N -s M ) e. No ) |
| 11 |
4 10 9
|
sleadd2d |
|- ( ( M e. NN0_s /\ N e. NN0_s ) -> ( 1s <_s ( N -s M ) <-> ( M +s 1s ) <_s ( M +s ( N -s M ) ) ) ) |
| 12 |
|
pncan3s |
|- ( ( M e. No /\ N e. No ) -> ( M +s ( N -s M ) ) = N ) |
| 13 |
8 6 12
|
syl2an |
|- ( ( M e. NN0_s /\ N e. NN0_s ) -> ( M +s ( N -s M ) ) = N ) |
| 14 |
13
|
breq2d |
|- ( ( M e. NN0_s /\ N e. NN0_s ) -> ( ( M +s 1s ) <_s ( M +s ( N -s M ) ) <-> ( M +s 1s ) <_s N ) ) |
| 15 |
11 14
|
bitrd |
|- ( ( M e. NN0_s /\ N e. NN0_s ) -> ( 1s <_s ( N -s M ) <-> ( M +s 1s ) <_s N ) ) |
| 16 |
2 15
|
imbitrid |
|- ( ( M e. NN0_s /\ N e. NN0_s ) -> ( ( N -s M ) e. NN_s -> ( M +s 1s ) <_s N ) ) |
| 17 |
1 16
|
sylbid |
|- ( ( M e. NN0_s /\ N e. NN0_s ) -> ( M ( M +s 1s ) <_s N ) ) |
| 18 |
8
|
ad2antrr |
|- ( ( ( M e. NN0_s /\ N e. NN0_s ) /\ ( M +s 1s ) <_s N ) -> M e. No ) |
| 19 |
|
peano2no |
|- ( M e. No -> ( M +s 1s ) e. No ) |
| 20 |
18 19
|
syl |
|- ( ( ( M e. NN0_s /\ N e. NN0_s ) /\ ( M +s 1s ) <_s N ) -> ( M +s 1s ) e. No ) |
| 21 |
6
|
ad2antlr |
|- ( ( ( M e. NN0_s /\ N e. NN0_s ) /\ ( M +s 1s ) <_s N ) -> N e. No ) |
| 22 |
18
|
sltp1d |
|- ( ( ( M e. NN0_s /\ N e. NN0_s ) /\ ( M +s 1s ) <_s N ) -> M |
| 23 |
|
simpr |
|- ( ( ( M e. NN0_s /\ N e. NN0_s ) /\ ( M +s 1s ) <_s N ) -> ( M +s 1s ) <_s N ) |
| 24 |
18 20 21 22 23
|
sltletrd |
|- ( ( ( M e. NN0_s /\ N e. NN0_s ) /\ ( M +s 1s ) <_s N ) -> M |
| 25 |
24
|
ex |
|- ( ( M e. NN0_s /\ N e. NN0_s ) -> ( ( M +s 1s ) <_s N -> M |
| 26 |
17 25
|
impbid |
|- ( ( M e. NN0_s /\ N e. NN0_s ) -> ( M ( M +s 1s ) <_s N ) ) |