| Step |
Hyp |
Ref |
Expression |
| 1 |
|
n0subs2 |
⊢ ( ( 𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s ) → ( 𝑀 <s 𝑁 ↔ ( 𝑁 -s 𝑀 ) ∈ ℕs ) ) |
| 2 |
|
nnsge1 |
⊢ ( ( 𝑁 -s 𝑀 ) ∈ ℕs → 1s ≤s ( 𝑁 -s 𝑀 ) ) |
| 3 |
|
1sno |
⊢ 1s ∈ No |
| 4 |
3
|
a1i |
⊢ ( ( 𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s ) → 1s ∈ No ) |
| 5 |
|
simpr |
⊢ ( ( 𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s ) → 𝑁 ∈ ℕ0s ) |
| 6 |
|
n0sno |
⊢ ( 𝑁 ∈ ℕ0s → 𝑁 ∈ No ) |
| 7 |
5 6
|
syl |
⊢ ( ( 𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s ) → 𝑁 ∈ No ) |
| 8 |
|
n0sno |
⊢ ( 𝑀 ∈ ℕ0s → 𝑀 ∈ No ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s ) → 𝑀 ∈ No ) |
| 10 |
7 9
|
subscld |
⊢ ( ( 𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s ) → ( 𝑁 -s 𝑀 ) ∈ No ) |
| 11 |
4 10 9
|
sleadd2d |
⊢ ( ( 𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s ) → ( 1s ≤s ( 𝑁 -s 𝑀 ) ↔ ( 𝑀 +s 1s ) ≤s ( 𝑀 +s ( 𝑁 -s 𝑀 ) ) ) ) |
| 12 |
|
pncan3s |
⊢ ( ( 𝑀 ∈ No ∧ 𝑁 ∈ No ) → ( 𝑀 +s ( 𝑁 -s 𝑀 ) ) = 𝑁 ) |
| 13 |
8 6 12
|
syl2an |
⊢ ( ( 𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s ) → ( 𝑀 +s ( 𝑁 -s 𝑀 ) ) = 𝑁 ) |
| 14 |
13
|
breq2d |
⊢ ( ( 𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s ) → ( ( 𝑀 +s 1s ) ≤s ( 𝑀 +s ( 𝑁 -s 𝑀 ) ) ↔ ( 𝑀 +s 1s ) ≤s 𝑁 ) ) |
| 15 |
11 14
|
bitrd |
⊢ ( ( 𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s ) → ( 1s ≤s ( 𝑁 -s 𝑀 ) ↔ ( 𝑀 +s 1s ) ≤s 𝑁 ) ) |
| 16 |
2 15
|
imbitrid |
⊢ ( ( 𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s ) → ( ( 𝑁 -s 𝑀 ) ∈ ℕs → ( 𝑀 +s 1s ) ≤s 𝑁 ) ) |
| 17 |
1 16
|
sylbid |
⊢ ( ( 𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s ) → ( 𝑀 <s 𝑁 → ( 𝑀 +s 1s ) ≤s 𝑁 ) ) |
| 18 |
8
|
ad2antrr |
⊢ ( ( ( 𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s ) ∧ ( 𝑀 +s 1s ) ≤s 𝑁 ) → 𝑀 ∈ No ) |
| 19 |
|
peano2no |
⊢ ( 𝑀 ∈ No → ( 𝑀 +s 1s ) ∈ No ) |
| 20 |
18 19
|
syl |
⊢ ( ( ( 𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s ) ∧ ( 𝑀 +s 1s ) ≤s 𝑁 ) → ( 𝑀 +s 1s ) ∈ No ) |
| 21 |
6
|
ad2antlr |
⊢ ( ( ( 𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s ) ∧ ( 𝑀 +s 1s ) ≤s 𝑁 ) → 𝑁 ∈ No ) |
| 22 |
18
|
sltp1d |
⊢ ( ( ( 𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s ) ∧ ( 𝑀 +s 1s ) ≤s 𝑁 ) → 𝑀 <s ( 𝑀 +s 1s ) ) |
| 23 |
|
simpr |
⊢ ( ( ( 𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s ) ∧ ( 𝑀 +s 1s ) ≤s 𝑁 ) → ( 𝑀 +s 1s ) ≤s 𝑁 ) |
| 24 |
18 20 21 22 23
|
sltletrd |
⊢ ( ( ( 𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s ) ∧ ( 𝑀 +s 1s ) ≤s 𝑁 ) → 𝑀 <s 𝑁 ) |
| 25 |
24
|
ex |
⊢ ( ( 𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s ) → ( ( 𝑀 +s 1s ) ≤s 𝑁 → 𝑀 <s 𝑁 ) ) |
| 26 |
17 25
|
impbid |
⊢ ( ( 𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s ) → ( 𝑀 <s 𝑁 ↔ ( 𝑀 +s 1s ) ≤s 𝑁 ) ) |