Metamath Proof Explorer


Theorem n0sltp1le

Description: Non-negative surreal ordering relation. (Contributed by Scott Fenton, 7-Nov-2025)

Ref Expression
Assertion n0sltp1le ( ( 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s ) → ( 𝑀 <s 𝑁 ↔ ( 𝑀 +s 1s ) ≤s 𝑁 ) )

Proof

Step Hyp Ref Expression
1 n0subs2 ( ( 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s ) → ( 𝑀 <s 𝑁 ↔ ( 𝑁 -s 𝑀 ) ∈ ℕs ) )
2 nnsge1 ( ( 𝑁 -s 𝑀 ) ∈ ℕs → 1s ≤s ( 𝑁 -s 𝑀 ) )
3 1sno 1s No
4 3 a1i ( ( 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s ) → 1s No )
5 simpr ( ( 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s ) → 𝑁 ∈ ℕ0s )
6 n0sno ( 𝑁 ∈ ℕ0s𝑁 No )
7 5 6 syl ( ( 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s ) → 𝑁 No )
8 n0sno ( 𝑀 ∈ ℕ0s𝑀 No )
9 8 adantr ( ( 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s ) → 𝑀 No )
10 7 9 subscld ( ( 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s ) → ( 𝑁 -s 𝑀 ) ∈ No )
11 4 10 9 sleadd2d ( ( 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s ) → ( 1s ≤s ( 𝑁 -s 𝑀 ) ↔ ( 𝑀 +s 1s ) ≤s ( 𝑀 +s ( 𝑁 -s 𝑀 ) ) ) )
12 pncan3s ( ( 𝑀 No 𝑁 No ) → ( 𝑀 +s ( 𝑁 -s 𝑀 ) ) = 𝑁 )
13 8 6 12 syl2an ( ( 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s ) → ( 𝑀 +s ( 𝑁 -s 𝑀 ) ) = 𝑁 )
14 13 breq2d ( ( 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s ) → ( ( 𝑀 +s 1s ) ≤s ( 𝑀 +s ( 𝑁 -s 𝑀 ) ) ↔ ( 𝑀 +s 1s ) ≤s 𝑁 ) )
15 11 14 bitrd ( ( 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s ) → ( 1s ≤s ( 𝑁 -s 𝑀 ) ↔ ( 𝑀 +s 1s ) ≤s 𝑁 ) )
16 2 15 imbitrid ( ( 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s ) → ( ( 𝑁 -s 𝑀 ) ∈ ℕs → ( 𝑀 +s 1s ) ≤s 𝑁 ) )
17 1 16 sylbid ( ( 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s ) → ( 𝑀 <s 𝑁 → ( 𝑀 +s 1s ) ≤s 𝑁 ) )
18 8 ad2antrr ( ( ( 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s ) ∧ ( 𝑀 +s 1s ) ≤s 𝑁 ) → 𝑀 No )
19 peano2no ( 𝑀 No → ( 𝑀 +s 1s ) ∈ No )
20 18 19 syl ( ( ( 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s ) ∧ ( 𝑀 +s 1s ) ≤s 𝑁 ) → ( 𝑀 +s 1s ) ∈ No )
21 6 ad2antlr ( ( ( 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s ) ∧ ( 𝑀 +s 1s ) ≤s 𝑁 ) → 𝑁 No )
22 18 sltp1d ( ( ( 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s ) ∧ ( 𝑀 +s 1s ) ≤s 𝑁 ) → 𝑀 <s ( 𝑀 +s 1s ) )
23 simpr ( ( ( 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s ) ∧ ( 𝑀 +s 1s ) ≤s 𝑁 ) → ( 𝑀 +s 1s ) ≤s 𝑁 )
24 18 20 21 22 23 sltletrd ( ( ( 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s ) ∧ ( 𝑀 +s 1s ) ≤s 𝑁 ) → 𝑀 <s 𝑁 )
25 24 ex ( ( 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s ) → ( ( 𝑀 +s 1s ) ≤s 𝑁𝑀 <s 𝑁 ) )
26 17 25 impbid ( ( 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s ) → ( 𝑀 <s 𝑁 ↔ ( 𝑀 +s 1s ) ≤s 𝑁 ) )