| Step |
Hyp |
Ref |
Expression |
| 1 |
|
n0subs |
⊢ ( ( 𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s ) → ( 𝑀 ≤s 𝑁 ↔ ( 𝑁 -s 𝑀 ) ∈ ℕ0s ) ) |
| 2 |
|
n0sno |
⊢ ( 𝑁 ∈ ℕ0s → 𝑁 ∈ No ) |
| 3 |
2
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s ) → 𝑁 ∈ No ) |
| 4 |
|
n0sno |
⊢ ( 𝑀 ∈ ℕ0s → 𝑀 ∈ No ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s ) → 𝑀 ∈ No ) |
| 6 |
3 5
|
subseq0d |
⊢ ( ( 𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s ) → ( ( 𝑁 -s 𝑀 ) = 0s ↔ 𝑁 = 𝑀 ) ) |
| 7 |
6
|
necon3bid |
⊢ ( ( 𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s ) → ( ( 𝑁 -s 𝑀 ) ≠ 0s ↔ 𝑁 ≠ 𝑀 ) ) |
| 8 |
7
|
bicomd |
⊢ ( ( 𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s ) → ( 𝑁 ≠ 𝑀 ↔ ( 𝑁 -s 𝑀 ) ≠ 0s ) ) |
| 9 |
1 8
|
anbi12d |
⊢ ( ( 𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s ) → ( ( 𝑀 ≤s 𝑁 ∧ 𝑁 ≠ 𝑀 ) ↔ ( ( 𝑁 -s 𝑀 ) ∈ ℕ0s ∧ ( 𝑁 -s 𝑀 ) ≠ 0s ) ) ) |
| 10 |
5 3
|
sltlend |
⊢ ( ( 𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s ) → ( 𝑀 <s 𝑁 ↔ ( 𝑀 ≤s 𝑁 ∧ 𝑁 ≠ 𝑀 ) ) ) |
| 11 |
|
elnns |
⊢ ( ( 𝑁 -s 𝑀 ) ∈ ℕs ↔ ( ( 𝑁 -s 𝑀 ) ∈ ℕ0s ∧ ( 𝑁 -s 𝑀 ) ≠ 0s ) ) |
| 12 |
11
|
a1i |
⊢ ( ( 𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s ) → ( ( 𝑁 -s 𝑀 ) ∈ ℕs ↔ ( ( 𝑁 -s 𝑀 ) ∈ ℕ0s ∧ ( 𝑁 -s 𝑀 ) ≠ 0s ) ) ) |
| 13 |
9 10 12
|
3bitr4d |
⊢ ( ( 𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s ) → ( 𝑀 <s 𝑁 ↔ ( 𝑁 -s 𝑀 ) ∈ ℕs ) ) |