Metamath Proof Explorer


Theorem n0subs2

Description: Subtraction of non-negative surreal integers. (Contributed by Scott Fenton, 7-Nov-2025)

Ref Expression
Assertion n0subs2 ( ( 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s ) → ( 𝑀 <s 𝑁 ↔ ( 𝑁 -s 𝑀 ) ∈ ℕs ) )

Proof

Step Hyp Ref Expression
1 n0subs ( ( 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s ) → ( 𝑀 ≤s 𝑁 ↔ ( 𝑁 -s 𝑀 ) ∈ ℕ0s ) )
2 n0sno ( 𝑁 ∈ ℕ0s𝑁 No )
3 2 adantl ( ( 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s ) → 𝑁 No )
4 n0sno ( 𝑀 ∈ ℕ0s𝑀 No )
5 4 adantr ( ( 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s ) → 𝑀 No )
6 3 5 subseq0d ( ( 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s ) → ( ( 𝑁 -s 𝑀 ) = 0s𝑁 = 𝑀 ) )
7 6 necon3bid ( ( 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s ) → ( ( 𝑁 -s 𝑀 ) ≠ 0s𝑁𝑀 ) )
8 7 bicomd ( ( 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s ) → ( 𝑁𝑀 ↔ ( 𝑁 -s 𝑀 ) ≠ 0s ) )
9 1 8 anbi12d ( ( 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s ) → ( ( 𝑀 ≤s 𝑁𝑁𝑀 ) ↔ ( ( 𝑁 -s 𝑀 ) ∈ ℕ0s ∧ ( 𝑁 -s 𝑀 ) ≠ 0s ) ) )
10 5 3 sltlend ( ( 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s ) → ( 𝑀 <s 𝑁 ↔ ( 𝑀 ≤s 𝑁𝑁𝑀 ) ) )
11 elnns ( ( 𝑁 -s 𝑀 ) ∈ ℕs ↔ ( ( 𝑁 -s 𝑀 ) ∈ ℕ0s ∧ ( 𝑁 -s 𝑀 ) ≠ 0s ) )
12 11 a1i ( ( 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s ) → ( ( 𝑁 -s 𝑀 ) ∈ ℕs ↔ ( ( 𝑁 -s 𝑀 ) ∈ ℕ0s ∧ ( 𝑁 -s 𝑀 ) ≠ 0s ) ) )
13 9 10 12 3bitr4d ( ( 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s ) → ( 𝑀 <s 𝑁 ↔ ( 𝑁 -s 𝑀 ) ∈ ℕs ) )