| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnns |
|- ( N e. NN_s <-> ( N e. NN0_s /\ N =/= 0s ) ) |
| 2 |
|
n0s0suc |
|- ( N e. NN0_s -> ( N = 0s \/ E. x e. NN0_s N = ( x +s 1s ) ) ) |
| 3 |
|
neneq |
|- ( N =/= 0s -> -. N = 0s ) |
| 4 |
|
pm2.53 |
|- ( ( N = 0s \/ E. x e. NN0_s N = ( x +s 1s ) ) -> ( -. N = 0s -> E. x e. NN0_s N = ( x +s 1s ) ) ) |
| 5 |
4
|
imp |
|- ( ( ( N = 0s \/ E. x e. NN0_s N = ( x +s 1s ) ) /\ -. N = 0s ) -> E. x e. NN0_s N = ( x +s 1s ) ) |
| 6 |
|
1sno |
|- 1s e. No |
| 7 |
|
addslid |
|- ( 1s e. No -> ( 0s +s 1s ) = 1s ) |
| 8 |
6 7
|
ax-mp |
|- ( 0s +s 1s ) = 1s |
| 9 |
|
n0sge0 |
|- ( x e. NN0_s -> 0s <_s x ) |
| 10 |
|
n0sno |
|- ( x e. NN0_s -> x e. No ) |
| 11 |
|
0sno |
|- 0s e. No |
| 12 |
|
sleadd1 |
|- ( ( 0s e. No /\ x e. No /\ 1s e. No ) -> ( 0s <_s x <-> ( 0s +s 1s ) <_s ( x +s 1s ) ) ) |
| 13 |
11 6 12
|
mp3an13 |
|- ( x e. No -> ( 0s <_s x <-> ( 0s +s 1s ) <_s ( x +s 1s ) ) ) |
| 14 |
10 13
|
syl |
|- ( x e. NN0_s -> ( 0s <_s x <-> ( 0s +s 1s ) <_s ( x +s 1s ) ) ) |
| 15 |
9 14
|
mpbid |
|- ( x e. NN0_s -> ( 0s +s 1s ) <_s ( x +s 1s ) ) |
| 16 |
8 15
|
eqbrtrrid |
|- ( x e. NN0_s -> 1s <_s ( x +s 1s ) ) |
| 17 |
|
breq2 |
|- ( N = ( x +s 1s ) -> ( 1s <_s N <-> 1s <_s ( x +s 1s ) ) ) |
| 18 |
16 17
|
syl5ibrcom |
|- ( x e. NN0_s -> ( N = ( x +s 1s ) -> 1s <_s N ) ) |
| 19 |
18
|
rexlimiv |
|- ( E. x e. NN0_s N = ( x +s 1s ) -> 1s <_s N ) |
| 20 |
5 19
|
syl |
|- ( ( ( N = 0s \/ E. x e. NN0_s N = ( x +s 1s ) ) /\ -. N = 0s ) -> 1s <_s N ) |
| 21 |
2 3 20
|
syl2an |
|- ( ( N e. NN0_s /\ N =/= 0s ) -> 1s <_s N ) |
| 22 |
1 21
|
sylbi |
|- ( N e. NN_s -> 1s <_s N ) |