| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elnns |  |-  ( N e. NN_s <-> ( N e. NN0_s /\ N =/= 0s ) ) | 
						
							| 2 |  | n0s0suc |  |-  ( N e. NN0_s -> ( N = 0s \/ E. x e. NN0_s N = ( x +s 1s ) ) ) | 
						
							| 3 |  | neneq |  |-  ( N =/= 0s -> -. N = 0s ) | 
						
							| 4 |  | pm2.53 |  |-  ( ( N = 0s \/ E. x e. NN0_s N = ( x +s 1s ) ) -> ( -. N = 0s -> E. x e. NN0_s N = ( x +s 1s ) ) ) | 
						
							| 5 | 4 | imp |  |-  ( ( ( N = 0s \/ E. x e. NN0_s N = ( x +s 1s ) ) /\ -. N = 0s ) -> E. x e. NN0_s N = ( x +s 1s ) ) | 
						
							| 6 |  | 1sno |  |-  1s e. No | 
						
							| 7 |  | addslid |  |-  ( 1s e. No -> ( 0s +s 1s ) = 1s ) | 
						
							| 8 | 6 7 | ax-mp |  |-  ( 0s +s 1s ) = 1s | 
						
							| 9 |  | n0sge0 |  |-  ( x e. NN0_s -> 0s <_s x ) | 
						
							| 10 |  | n0sno |  |-  ( x e. NN0_s -> x e. No ) | 
						
							| 11 |  | 0sno |  |-  0s e. No | 
						
							| 12 |  | sleadd1 |  |-  ( ( 0s e. No /\ x e. No /\ 1s e. No ) -> ( 0s <_s x <-> ( 0s +s 1s ) <_s ( x +s 1s ) ) ) | 
						
							| 13 | 11 6 12 | mp3an13 |  |-  ( x e. No -> ( 0s <_s x <-> ( 0s +s 1s ) <_s ( x +s 1s ) ) ) | 
						
							| 14 | 10 13 | syl |  |-  ( x e. NN0_s -> ( 0s <_s x <-> ( 0s +s 1s ) <_s ( x +s 1s ) ) ) | 
						
							| 15 | 9 14 | mpbid |  |-  ( x e. NN0_s -> ( 0s +s 1s ) <_s ( x +s 1s ) ) | 
						
							| 16 | 8 15 | eqbrtrrid |  |-  ( x e. NN0_s -> 1s <_s ( x +s 1s ) ) | 
						
							| 17 |  | breq2 |  |-  ( N = ( x +s 1s ) -> ( 1s <_s N <-> 1s <_s ( x +s 1s ) ) ) | 
						
							| 18 | 16 17 | syl5ibrcom |  |-  ( x e. NN0_s -> ( N = ( x +s 1s ) -> 1s <_s N ) ) | 
						
							| 19 | 18 | rexlimiv |  |-  ( E. x e. NN0_s N = ( x +s 1s ) -> 1s <_s N ) | 
						
							| 20 | 5 19 | syl |  |-  ( ( ( N = 0s \/ E. x e. NN0_s N = ( x +s 1s ) ) /\ -. N = 0s ) -> 1s <_s N ) | 
						
							| 21 | 2 3 20 | syl2an |  |-  ( ( N e. NN0_s /\ N =/= 0s ) -> 1s <_s N ) | 
						
							| 22 | 1 21 | sylbi |  |-  ( N e. NN_s -> 1s <_s N ) |