Metamath Proof Explorer


Theorem nnsge1

Description: A positive surreal integer is greater than or equal to one. (Contributed by Scott Fenton, 26-Jul-2025)

Ref Expression
Assertion nnsge1
|- ( N e. NN_s -> 1s <_s N )

Proof

Step Hyp Ref Expression
1 elnns
 |-  ( N e. NN_s <-> ( N e. NN0_s /\ N =/= 0s ) )
2 n0s0suc
 |-  ( N e. NN0_s -> ( N = 0s \/ E. x e. NN0_s N = ( x +s 1s ) ) )
3 neneq
 |-  ( N =/= 0s -> -. N = 0s )
4 pm2.53
 |-  ( ( N = 0s \/ E. x e. NN0_s N = ( x +s 1s ) ) -> ( -. N = 0s -> E. x e. NN0_s N = ( x +s 1s ) ) )
5 4 imp
 |-  ( ( ( N = 0s \/ E. x e. NN0_s N = ( x +s 1s ) ) /\ -. N = 0s ) -> E. x e. NN0_s N = ( x +s 1s ) )
6 1sno
 |-  1s e. No
7 addslid
 |-  ( 1s e. No -> ( 0s +s 1s ) = 1s )
8 6 7 ax-mp
 |-  ( 0s +s 1s ) = 1s
9 n0sge0
 |-  ( x e. NN0_s -> 0s <_s x )
10 n0sno
 |-  ( x e. NN0_s -> x e. No )
11 0sno
 |-  0s e. No
12 sleadd1
 |-  ( ( 0s e. No /\ x e. No /\ 1s e. No ) -> ( 0s <_s x <-> ( 0s +s 1s ) <_s ( x +s 1s ) ) )
13 11 6 12 mp3an13
 |-  ( x e. No -> ( 0s <_s x <-> ( 0s +s 1s ) <_s ( x +s 1s ) ) )
14 10 13 syl
 |-  ( x e. NN0_s -> ( 0s <_s x <-> ( 0s +s 1s ) <_s ( x +s 1s ) ) )
15 9 14 mpbid
 |-  ( x e. NN0_s -> ( 0s +s 1s ) <_s ( x +s 1s ) )
16 8 15 eqbrtrrid
 |-  ( x e. NN0_s -> 1s <_s ( x +s 1s ) )
17 breq2
 |-  ( N = ( x +s 1s ) -> ( 1s <_s N <-> 1s <_s ( x +s 1s ) ) )
18 16 17 syl5ibrcom
 |-  ( x e. NN0_s -> ( N = ( x +s 1s ) -> 1s <_s N ) )
19 18 rexlimiv
 |-  ( E. x e. NN0_s N = ( x +s 1s ) -> 1s <_s N )
20 5 19 syl
 |-  ( ( ( N = 0s \/ E. x e. NN0_s N = ( x +s 1s ) ) /\ -. N = 0s ) -> 1s <_s N )
21 2 3 20 syl2an
 |-  ( ( N e. NN0_s /\ N =/= 0s ) -> 1s <_s N )
22 1 21 sylbi
 |-  ( N e. NN_s -> 1s <_s N )