Step |
Hyp |
Ref |
Expression |
1 |
|
eqeq1 |
|- ( x = 0s -> ( x = 0s <-> 0s = 0s ) ) |
2 |
|
oveq1 |
|- ( x = 0s -> ( x -s 1s ) = ( 0s -s 1s ) ) |
3 |
2
|
eleq1d |
|- ( x = 0s -> ( ( x -s 1s ) e. NN0_s <-> ( 0s -s 1s ) e. NN0_s ) ) |
4 |
1 3
|
orbi12d |
|- ( x = 0s -> ( ( x = 0s \/ ( x -s 1s ) e. NN0_s ) <-> ( 0s = 0s \/ ( 0s -s 1s ) e. NN0_s ) ) ) |
5 |
|
eqeq1 |
|- ( x = y -> ( x = 0s <-> y = 0s ) ) |
6 |
|
oveq1 |
|- ( x = y -> ( x -s 1s ) = ( y -s 1s ) ) |
7 |
6
|
eleq1d |
|- ( x = y -> ( ( x -s 1s ) e. NN0_s <-> ( y -s 1s ) e. NN0_s ) ) |
8 |
5 7
|
orbi12d |
|- ( x = y -> ( ( x = 0s \/ ( x -s 1s ) e. NN0_s ) <-> ( y = 0s \/ ( y -s 1s ) e. NN0_s ) ) ) |
9 |
|
eqeq1 |
|- ( x = ( y +s 1s ) -> ( x = 0s <-> ( y +s 1s ) = 0s ) ) |
10 |
|
oveq1 |
|- ( x = ( y +s 1s ) -> ( x -s 1s ) = ( ( y +s 1s ) -s 1s ) ) |
11 |
10
|
eleq1d |
|- ( x = ( y +s 1s ) -> ( ( x -s 1s ) e. NN0_s <-> ( ( y +s 1s ) -s 1s ) e. NN0_s ) ) |
12 |
9 11
|
orbi12d |
|- ( x = ( y +s 1s ) -> ( ( x = 0s \/ ( x -s 1s ) e. NN0_s ) <-> ( ( y +s 1s ) = 0s \/ ( ( y +s 1s ) -s 1s ) e. NN0_s ) ) ) |
13 |
|
eqeq1 |
|- ( x = A -> ( x = 0s <-> A = 0s ) ) |
14 |
|
oveq1 |
|- ( x = A -> ( x -s 1s ) = ( A -s 1s ) ) |
15 |
14
|
eleq1d |
|- ( x = A -> ( ( x -s 1s ) e. NN0_s <-> ( A -s 1s ) e. NN0_s ) ) |
16 |
13 15
|
orbi12d |
|- ( x = A -> ( ( x = 0s \/ ( x -s 1s ) e. NN0_s ) <-> ( A = 0s \/ ( A -s 1s ) e. NN0_s ) ) ) |
17 |
|
eqid |
|- 0s = 0s |
18 |
17
|
orci |
|- ( 0s = 0s \/ ( 0s -s 1s ) e. NN0_s ) |
19 |
|
n0sno |
|- ( y e. NN0_s -> y e. No ) |
20 |
|
1sno |
|- 1s e. No |
21 |
|
pncans |
|- ( ( y e. No /\ 1s e. No ) -> ( ( y +s 1s ) -s 1s ) = y ) |
22 |
19 20 21
|
sylancl |
|- ( y e. NN0_s -> ( ( y +s 1s ) -s 1s ) = y ) |
23 |
|
id |
|- ( y e. NN0_s -> y e. NN0_s ) |
24 |
22 23
|
eqeltrd |
|- ( y e. NN0_s -> ( ( y +s 1s ) -s 1s ) e. NN0_s ) |
25 |
24
|
olcd |
|- ( y e. NN0_s -> ( ( y +s 1s ) = 0s \/ ( ( y +s 1s ) -s 1s ) e. NN0_s ) ) |
26 |
25
|
a1d |
|- ( y e. NN0_s -> ( ( y = 0s \/ ( y -s 1s ) e. NN0_s ) -> ( ( y +s 1s ) = 0s \/ ( ( y +s 1s ) -s 1s ) e. NN0_s ) ) ) |
27 |
4 8 12 16 18 26
|
n0sind |
|- ( A e. NN0_s -> ( A = 0s \/ ( A -s 1s ) e. NN0_s ) ) |