| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elzn0s |
|- ( N e. ZZ_s <-> ( N e. No /\ ( N e. NN0_s \/ ( -us ` N ) e. NN0_s ) ) ) |
| 2 |
|
eln0s |
|- ( N e. NN0_s <-> ( N e. NN_s \/ N = 0s ) ) |
| 3 |
2
|
a1i |
|- ( N e. No -> ( N e. NN0_s <-> ( N e. NN_s \/ N = 0s ) ) ) |
| 4 |
|
eln0s |
|- ( ( -us ` N ) e. NN0_s <-> ( ( -us ` N ) e. NN_s \/ ( -us ` N ) = 0s ) ) |
| 5 |
|
negs0s |
|- ( -us ` 0s ) = 0s |
| 6 |
5
|
eqeq2i |
|- ( ( -us ` N ) = ( -us ` 0s ) <-> ( -us ` N ) = 0s ) |
| 7 |
|
0sno |
|- 0s e. No |
| 8 |
|
negs11 |
|- ( ( N e. No /\ 0s e. No ) -> ( ( -us ` N ) = ( -us ` 0s ) <-> N = 0s ) ) |
| 9 |
7 8
|
mpan2 |
|- ( N e. No -> ( ( -us ` N ) = ( -us ` 0s ) <-> N = 0s ) ) |
| 10 |
6 9
|
bitr3id |
|- ( N e. No -> ( ( -us ` N ) = 0s <-> N = 0s ) ) |
| 11 |
10
|
orbi2d |
|- ( N e. No -> ( ( ( -us ` N ) e. NN_s \/ ( -us ` N ) = 0s ) <-> ( ( -us ` N ) e. NN_s \/ N = 0s ) ) ) |
| 12 |
4 11
|
bitrid |
|- ( N e. No -> ( ( -us ` N ) e. NN0_s <-> ( ( -us ` N ) e. NN_s \/ N = 0s ) ) ) |
| 13 |
3 12
|
orbi12d |
|- ( N e. No -> ( ( N e. NN0_s \/ ( -us ` N ) e. NN0_s ) <-> ( ( N e. NN_s \/ N = 0s ) \/ ( ( -us ` N ) e. NN_s \/ N = 0s ) ) ) ) |
| 14 |
|
3orcoma |
|- ( ( N e. NN_s \/ N = 0s \/ ( -us ` N ) e. NN_s ) <-> ( N = 0s \/ N e. NN_s \/ ( -us ` N ) e. NN_s ) ) |
| 15 |
|
3orass |
|- ( ( N = 0s \/ N e. NN_s \/ ( -us ` N ) e. NN_s ) <-> ( N = 0s \/ ( N e. NN_s \/ ( -us ` N ) e. NN_s ) ) ) |
| 16 |
|
orcom |
|- ( ( N = 0s \/ ( N e. NN_s \/ ( -us ` N ) e. NN_s ) ) <-> ( ( N e. NN_s \/ ( -us ` N ) e. NN_s ) \/ N = 0s ) ) |
| 17 |
|
orordir |
|- ( ( ( N e. NN_s \/ ( -us ` N ) e. NN_s ) \/ N = 0s ) <-> ( ( N e. NN_s \/ N = 0s ) \/ ( ( -us ` N ) e. NN_s \/ N = 0s ) ) ) |
| 18 |
16 17
|
bitri |
|- ( ( N = 0s \/ ( N e. NN_s \/ ( -us ` N ) e. NN_s ) ) <-> ( ( N e. NN_s \/ N = 0s ) \/ ( ( -us ` N ) e. NN_s \/ N = 0s ) ) ) |
| 19 |
14 15 18
|
3bitrri |
|- ( ( ( N e. NN_s \/ N = 0s ) \/ ( ( -us ` N ) e. NN_s \/ N = 0s ) ) <-> ( N e. NN_s \/ N = 0s \/ ( -us ` N ) e. NN_s ) ) |
| 20 |
13 19
|
bitr2di |
|- ( N e. No -> ( ( N e. NN_s \/ N = 0s \/ ( -us ` N ) e. NN_s ) <-> ( N e. NN0_s \/ ( -us ` N ) e. NN0_s ) ) ) |
| 21 |
20
|
pm5.32i |
|- ( ( N e. No /\ ( N e. NN_s \/ N = 0s \/ ( -us ` N ) e. NN_s ) ) <-> ( N e. No /\ ( N e. NN0_s \/ ( -us ` N ) e. NN0_s ) ) ) |
| 22 |
1 21
|
bitr4i |
|- ( N e. ZZ_s <-> ( N e. No /\ ( N e. NN_s \/ N = 0s \/ ( -us ` N ) e. NN_s ) ) ) |