Metamath Proof Explorer


Theorem elzs2

Description: A surreal integer is either a positive integer, zero, or the negative of a positive integer. (Contributed by Scott Fenton, 25-Jul-2025)

Ref Expression
Assertion elzs2 N s N No N s N = 0 s + s N s

Proof

Step Hyp Ref Expression
1 elzn0s N s N No N 0s + s N 0s
2 eln0s N 0s N s N = 0 s
3 2 a1i N No N 0s N s N = 0 s
4 eln0s + s N 0s + s N s + s N = 0 s
5 negs0s + s 0 s = 0 s
6 5 eqeq2i + s N = + s 0 s + s N = 0 s
7 0sno 0 s No
8 negs11 N No 0 s No + s N = + s 0 s N = 0 s
9 7 8 mpan2 N No + s N = + s 0 s N = 0 s
10 6 9 bitr3id N No + s N = 0 s N = 0 s
11 10 orbi2d N No + s N s + s N = 0 s + s N s N = 0 s
12 4 11 bitrid N No + s N 0s + s N s N = 0 s
13 3 12 orbi12d N No N 0s + s N 0s N s N = 0 s + s N s N = 0 s
14 3orcoma N s N = 0 s + s N s N = 0 s N s + s N s
15 3orass N = 0 s N s + s N s N = 0 s N s + s N s
16 orcom N = 0 s N s + s N s N s + s N s N = 0 s
17 orordir N s + s N s N = 0 s N s N = 0 s + s N s N = 0 s
18 16 17 bitri N = 0 s N s + s N s N s N = 0 s + s N s N = 0 s
19 14 15 18 3bitrri N s N = 0 s + s N s N = 0 s N s N = 0 s + s N s
20 13 19 bitr2di N No N s N = 0 s + s N s N 0s + s N 0s
21 20 pm5.32i N No N s N = 0 s + s N s N No N 0s + s N 0s
22 1 21 bitr4i N s N No N s N = 0 s + s N s