Metamath Proof Explorer


Theorem eln0zs

Description: Non-negative surreal integer property expressed in terms of integers. (Contributed by Scott Fenton, 25-Jul-2025)

Ref Expression
Assertion eln0zs N 0s N s 0 s s N

Proof

Step Hyp Ref Expression
1 n0zs N 0s N s
2 n0sge0 N 0s 0 s s N
3 1 2 jca N 0s N s 0 s s N
4 elzs N s x s y s N = x - s y
5 nnsno x s x No
6 5 adantr x s y s x No
7 nnsno y s y No
8 7 adantl x s y s y No
9 6 8 subsge0d x s y s 0 s s x - s y y s x
10 nnn0s y s y 0s
11 nnn0s x s x 0s
12 n0subs y 0s x 0s y s x x - s y 0s
13 10 11 12 syl2anr x s y s y s x x - s y 0s
14 9 13 bitrd x s y s 0 s s x - s y x - s y 0s
15 14 biimpd x s y s 0 s s x - s y x - s y 0s
16 breq2 N = x - s y 0 s s N 0 s s x - s y
17 eleq1 N = x - s y N 0s x - s y 0s
18 16 17 imbi12d N = x - s y 0 s s N N 0s 0 s s x - s y x - s y 0s
19 15 18 syl5ibrcom x s y s N = x - s y 0 s s N N 0s
20 19 rexlimivv x s y s N = x - s y 0 s s N N 0s
21 4 20 sylbi N s 0 s s N N 0s
22 21 imp N s 0 s s N N 0s
23 3 22 impbii N 0s N s 0 s s N