Metamath Proof Explorer


Theorem eln0zs

Description: Non-negative surreal integer property expressed in terms of integers. (Contributed by Scott Fenton, 25-Jul-2025)

Ref Expression
Assertion eln0zs ( 𝑁 ∈ ℕ0s ↔ ( 𝑁 ∈ ℤs ∧ 0s ≤s 𝑁 ) )

Proof

Step Hyp Ref Expression
1 n0zs ( 𝑁 ∈ ℕ0s𝑁 ∈ ℤs )
2 n0sge0 ( 𝑁 ∈ ℕ0s → 0s ≤s 𝑁 )
3 1 2 jca ( 𝑁 ∈ ℕ0s → ( 𝑁 ∈ ℤs ∧ 0s ≤s 𝑁 ) )
4 elzs ( 𝑁 ∈ ℤs ↔ ∃ 𝑥 ∈ ℕs𝑦 ∈ ℕs 𝑁 = ( 𝑥 -s 𝑦 ) )
5 nnsno ( 𝑥 ∈ ℕs𝑥 No )
6 5 adantr ( ( 𝑥 ∈ ℕs𝑦 ∈ ℕs ) → 𝑥 No )
7 nnsno ( 𝑦 ∈ ℕs𝑦 No )
8 7 adantl ( ( 𝑥 ∈ ℕs𝑦 ∈ ℕs ) → 𝑦 No )
9 6 8 subsge0d ( ( 𝑥 ∈ ℕs𝑦 ∈ ℕs ) → ( 0s ≤s ( 𝑥 -s 𝑦 ) ↔ 𝑦 ≤s 𝑥 ) )
10 nnn0s ( 𝑦 ∈ ℕs𝑦 ∈ ℕ0s )
11 nnn0s ( 𝑥 ∈ ℕs𝑥 ∈ ℕ0s )
12 n0subs ( ( 𝑦 ∈ ℕ0s𝑥 ∈ ℕ0s ) → ( 𝑦 ≤s 𝑥 ↔ ( 𝑥 -s 𝑦 ) ∈ ℕ0s ) )
13 10 11 12 syl2anr ( ( 𝑥 ∈ ℕs𝑦 ∈ ℕs ) → ( 𝑦 ≤s 𝑥 ↔ ( 𝑥 -s 𝑦 ) ∈ ℕ0s ) )
14 9 13 bitrd ( ( 𝑥 ∈ ℕs𝑦 ∈ ℕs ) → ( 0s ≤s ( 𝑥 -s 𝑦 ) ↔ ( 𝑥 -s 𝑦 ) ∈ ℕ0s ) )
15 14 biimpd ( ( 𝑥 ∈ ℕs𝑦 ∈ ℕs ) → ( 0s ≤s ( 𝑥 -s 𝑦 ) → ( 𝑥 -s 𝑦 ) ∈ ℕ0s ) )
16 breq2 ( 𝑁 = ( 𝑥 -s 𝑦 ) → ( 0s ≤s 𝑁 ↔ 0s ≤s ( 𝑥 -s 𝑦 ) ) )
17 eleq1 ( 𝑁 = ( 𝑥 -s 𝑦 ) → ( 𝑁 ∈ ℕ0s ↔ ( 𝑥 -s 𝑦 ) ∈ ℕ0s ) )
18 16 17 imbi12d ( 𝑁 = ( 𝑥 -s 𝑦 ) → ( ( 0s ≤s 𝑁𝑁 ∈ ℕ0s ) ↔ ( 0s ≤s ( 𝑥 -s 𝑦 ) → ( 𝑥 -s 𝑦 ) ∈ ℕ0s ) ) )
19 15 18 syl5ibrcom ( ( 𝑥 ∈ ℕs𝑦 ∈ ℕs ) → ( 𝑁 = ( 𝑥 -s 𝑦 ) → ( 0s ≤s 𝑁𝑁 ∈ ℕ0s ) ) )
20 19 rexlimivv ( ∃ 𝑥 ∈ ℕs𝑦 ∈ ℕs 𝑁 = ( 𝑥 -s 𝑦 ) → ( 0s ≤s 𝑁𝑁 ∈ ℕ0s ) )
21 4 20 sylbi ( 𝑁 ∈ ℤs → ( 0s ≤s 𝑁𝑁 ∈ ℕ0s ) )
22 21 imp ( ( 𝑁 ∈ ℤs ∧ 0s ≤s 𝑁 ) → 𝑁 ∈ ℕ0s )
23 3 22 impbii ( 𝑁 ∈ ℕ0s ↔ ( 𝑁 ∈ ℤs ∧ 0s ≤s 𝑁 ) )