Metamath Proof Explorer


Theorem elnnzs

Description: Positive surreal integer property expressed in terms of integers. (Contributed by Scott Fenton, 25-Jul-2025)

Ref Expression
Assertion elnnzs ( 𝑁 ∈ ℕs ↔ ( 𝑁 ∈ ℤs ∧ 0s <s 𝑁 ) )

Proof

Step Hyp Ref Expression
1 nnsno ( 𝑁 ∈ ℕs𝑁 No )
2 orc ( 𝑁 ∈ ℕs → ( 𝑁 ∈ ℕs ∨ ( ( -us𝑁 ) ∈ ℕs𝑁 = 0s ) ) )
3 nnsgt0 ( 𝑁 ∈ ℕs → 0s <s 𝑁 )
4 1 2 3 jca31 ( 𝑁 ∈ ℕs → ( ( 𝑁 No ∧ ( 𝑁 ∈ ℕs ∨ ( ( -us𝑁 ) ∈ ℕs𝑁 = 0s ) ) ) ∧ 0s <s 𝑁 ) )
5 idd ( ( 𝑁 No ∧ 0s <s 𝑁 ) → ( 𝑁 ∈ ℕs𝑁 ∈ ℕs ) )
6 negscl ( 𝑁 No → ( -us𝑁 ) ∈ No )
7 6 adantr ( ( 𝑁 No ∧ 0s <s 𝑁 ) → ( -us𝑁 ) ∈ No )
8 0sno 0s No
9 sltneg ( ( 0s No 𝑁 No ) → ( 0s <s 𝑁 ↔ ( -us𝑁 ) <s ( -us ‘ 0s ) ) )
10 8 9 mpan ( 𝑁 No → ( 0s <s 𝑁 ↔ ( -us𝑁 ) <s ( -us ‘ 0s ) ) )
11 negs0s ( -us ‘ 0s ) = 0s
12 11 breq2i ( ( -us𝑁 ) <s ( -us ‘ 0s ) ↔ ( -us𝑁 ) <s 0s )
13 10 12 bitrdi ( 𝑁 No → ( 0s <s 𝑁 ↔ ( -us𝑁 ) <s 0s ) )
14 13 biimpa ( ( 𝑁 No ∧ 0s <s 𝑁 ) → ( -us𝑁 ) <s 0s )
15 sltasym ( ( ( -us𝑁 ) ∈ No ∧ 0s No ) → ( ( -us𝑁 ) <s 0s → ¬ 0s <s ( -us𝑁 ) ) )
16 8 15 mpan2 ( ( -us𝑁 ) ∈ No → ( ( -us𝑁 ) <s 0s → ¬ 0s <s ( -us𝑁 ) ) )
17 7 14 16 sylc ( ( 𝑁 No ∧ 0s <s 𝑁 ) → ¬ 0s <s ( -us𝑁 ) )
18 nnsgt0 ( ( -us𝑁 ) ∈ ℕs → 0s <s ( -us𝑁 ) )
19 17 18 nsyl ( ( 𝑁 No ∧ 0s <s 𝑁 ) → ¬ ( -us𝑁 ) ∈ ℕs )
20 sgt0ne0 ( 0s <s 𝑁𝑁 ≠ 0s )
21 20 adantl ( ( 𝑁 No ∧ 0s <s 𝑁 ) → 𝑁 ≠ 0s )
22 21 neneqd ( ( 𝑁 No ∧ 0s <s 𝑁 ) → ¬ 𝑁 = 0s )
23 ioran ( ¬ ( ( -us𝑁 ) ∈ ℕs𝑁 = 0s ) ↔ ( ¬ ( -us𝑁 ) ∈ ℕs ∧ ¬ 𝑁 = 0s ) )
24 19 22 23 sylanbrc ( ( 𝑁 No ∧ 0s <s 𝑁 ) → ¬ ( ( -us𝑁 ) ∈ ℕs𝑁 = 0s ) )
25 24 pm2.21d ( ( 𝑁 No ∧ 0s <s 𝑁 ) → ( ( ( -us𝑁 ) ∈ ℕs𝑁 = 0s ) → 𝑁 ∈ ℕs ) )
26 5 25 jaod ( ( 𝑁 No ∧ 0s <s 𝑁 ) → ( ( 𝑁 ∈ ℕs ∨ ( ( -us𝑁 ) ∈ ℕs𝑁 = 0s ) ) → 𝑁 ∈ ℕs ) )
27 26 ex ( 𝑁 No → ( 0s <s 𝑁 → ( ( 𝑁 ∈ ℕs ∨ ( ( -us𝑁 ) ∈ ℕs𝑁 = 0s ) ) → 𝑁 ∈ ℕs ) ) )
28 27 com23 ( 𝑁 No → ( ( 𝑁 ∈ ℕs ∨ ( ( -us𝑁 ) ∈ ℕs𝑁 = 0s ) ) → ( 0s <s 𝑁𝑁 ∈ ℕs ) ) )
29 28 imp31 ( ( ( 𝑁 No ∧ ( 𝑁 ∈ ℕs ∨ ( ( -us𝑁 ) ∈ ℕs𝑁 = 0s ) ) ) ∧ 0s <s 𝑁 ) → 𝑁 ∈ ℕs )
30 4 29 impbii ( 𝑁 ∈ ℕs ↔ ( ( 𝑁 No ∧ ( 𝑁 ∈ ℕs ∨ ( ( -us𝑁 ) ∈ ℕs𝑁 = 0s ) ) ) ∧ 0s <s 𝑁 ) )
31 elzs2 ( 𝑁 ∈ ℤs ↔ ( 𝑁 No ∧ ( 𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁 ) ∈ ℕs ) ) )
32 3orcomb ( ( 𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁 ) ∈ ℕs ) ↔ ( 𝑁 ∈ ℕs ∨ ( -us𝑁 ) ∈ ℕs𝑁 = 0s ) )
33 3orass ( ( 𝑁 ∈ ℕs ∨ ( -us𝑁 ) ∈ ℕs𝑁 = 0s ) ↔ ( 𝑁 ∈ ℕs ∨ ( ( -us𝑁 ) ∈ ℕs𝑁 = 0s ) ) )
34 32 33 bitri ( ( 𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁 ) ∈ ℕs ) ↔ ( 𝑁 ∈ ℕs ∨ ( ( -us𝑁 ) ∈ ℕs𝑁 = 0s ) ) )
35 34 anbi2i ( ( 𝑁 No ∧ ( 𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁 ) ∈ ℕs ) ) ↔ ( 𝑁 No ∧ ( 𝑁 ∈ ℕs ∨ ( ( -us𝑁 ) ∈ ℕs𝑁 = 0s ) ) ) )
36 31 35 bitri ( 𝑁 ∈ ℤs ↔ ( 𝑁 No ∧ ( 𝑁 ∈ ℕs ∨ ( ( -us𝑁 ) ∈ ℕs𝑁 = 0s ) ) ) )
37 36 anbi1i ( ( 𝑁 ∈ ℤs ∧ 0s <s 𝑁 ) ↔ ( ( 𝑁 No ∧ ( 𝑁 ∈ ℕs ∨ ( ( -us𝑁 ) ∈ ℕs𝑁 = 0s ) ) ) ∧ 0s <s 𝑁 ) )
38 30 37 bitr4i ( 𝑁 ∈ ℕs ↔ ( 𝑁 ∈ ℤs ∧ 0s <s 𝑁 ) )