| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnsno |
⊢ ( 𝑁 ∈ ℕs → 𝑁 ∈ No ) |
| 2 |
|
orc |
⊢ ( 𝑁 ∈ ℕs → ( 𝑁 ∈ ℕs ∨ ( ( -us ‘ 𝑁 ) ∈ ℕs ∨ 𝑁 = 0s ) ) ) |
| 3 |
|
nnsgt0 |
⊢ ( 𝑁 ∈ ℕs → 0s <s 𝑁 ) |
| 4 |
1 2 3
|
jca31 |
⊢ ( 𝑁 ∈ ℕs → ( ( 𝑁 ∈ No ∧ ( 𝑁 ∈ ℕs ∨ ( ( -us ‘ 𝑁 ) ∈ ℕs ∨ 𝑁 = 0s ) ) ) ∧ 0s <s 𝑁 ) ) |
| 5 |
|
idd |
⊢ ( ( 𝑁 ∈ No ∧ 0s <s 𝑁 ) → ( 𝑁 ∈ ℕs → 𝑁 ∈ ℕs ) ) |
| 6 |
|
negscl |
⊢ ( 𝑁 ∈ No → ( -us ‘ 𝑁 ) ∈ No ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝑁 ∈ No ∧ 0s <s 𝑁 ) → ( -us ‘ 𝑁 ) ∈ No ) |
| 8 |
|
0sno |
⊢ 0s ∈ No |
| 9 |
|
sltneg |
⊢ ( ( 0s ∈ No ∧ 𝑁 ∈ No ) → ( 0s <s 𝑁 ↔ ( -us ‘ 𝑁 ) <s ( -us ‘ 0s ) ) ) |
| 10 |
8 9
|
mpan |
⊢ ( 𝑁 ∈ No → ( 0s <s 𝑁 ↔ ( -us ‘ 𝑁 ) <s ( -us ‘ 0s ) ) ) |
| 11 |
|
negs0s |
⊢ ( -us ‘ 0s ) = 0s |
| 12 |
11
|
breq2i |
⊢ ( ( -us ‘ 𝑁 ) <s ( -us ‘ 0s ) ↔ ( -us ‘ 𝑁 ) <s 0s ) |
| 13 |
10 12
|
bitrdi |
⊢ ( 𝑁 ∈ No → ( 0s <s 𝑁 ↔ ( -us ‘ 𝑁 ) <s 0s ) ) |
| 14 |
13
|
biimpa |
⊢ ( ( 𝑁 ∈ No ∧ 0s <s 𝑁 ) → ( -us ‘ 𝑁 ) <s 0s ) |
| 15 |
|
sltasym |
⊢ ( ( ( -us ‘ 𝑁 ) ∈ No ∧ 0s ∈ No ) → ( ( -us ‘ 𝑁 ) <s 0s → ¬ 0s <s ( -us ‘ 𝑁 ) ) ) |
| 16 |
8 15
|
mpan2 |
⊢ ( ( -us ‘ 𝑁 ) ∈ No → ( ( -us ‘ 𝑁 ) <s 0s → ¬ 0s <s ( -us ‘ 𝑁 ) ) ) |
| 17 |
7 14 16
|
sylc |
⊢ ( ( 𝑁 ∈ No ∧ 0s <s 𝑁 ) → ¬ 0s <s ( -us ‘ 𝑁 ) ) |
| 18 |
|
nnsgt0 |
⊢ ( ( -us ‘ 𝑁 ) ∈ ℕs → 0s <s ( -us ‘ 𝑁 ) ) |
| 19 |
17 18
|
nsyl |
⊢ ( ( 𝑁 ∈ No ∧ 0s <s 𝑁 ) → ¬ ( -us ‘ 𝑁 ) ∈ ℕs ) |
| 20 |
|
sgt0ne0 |
⊢ ( 0s <s 𝑁 → 𝑁 ≠ 0s ) |
| 21 |
20
|
adantl |
⊢ ( ( 𝑁 ∈ No ∧ 0s <s 𝑁 ) → 𝑁 ≠ 0s ) |
| 22 |
21
|
neneqd |
⊢ ( ( 𝑁 ∈ No ∧ 0s <s 𝑁 ) → ¬ 𝑁 = 0s ) |
| 23 |
|
ioran |
⊢ ( ¬ ( ( -us ‘ 𝑁 ) ∈ ℕs ∨ 𝑁 = 0s ) ↔ ( ¬ ( -us ‘ 𝑁 ) ∈ ℕs ∧ ¬ 𝑁 = 0s ) ) |
| 24 |
19 22 23
|
sylanbrc |
⊢ ( ( 𝑁 ∈ No ∧ 0s <s 𝑁 ) → ¬ ( ( -us ‘ 𝑁 ) ∈ ℕs ∨ 𝑁 = 0s ) ) |
| 25 |
24
|
pm2.21d |
⊢ ( ( 𝑁 ∈ No ∧ 0s <s 𝑁 ) → ( ( ( -us ‘ 𝑁 ) ∈ ℕs ∨ 𝑁 = 0s ) → 𝑁 ∈ ℕs ) ) |
| 26 |
5 25
|
jaod |
⊢ ( ( 𝑁 ∈ No ∧ 0s <s 𝑁 ) → ( ( 𝑁 ∈ ℕs ∨ ( ( -us ‘ 𝑁 ) ∈ ℕs ∨ 𝑁 = 0s ) ) → 𝑁 ∈ ℕs ) ) |
| 27 |
26
|
ex |
⊢ ( 𝑁 ∈ No → ( 0s <s 𝑁 → ( ( 𝑁 ∈ ℕs ∨ ( ( -us ‘ 𝑁 ) ∈ ℕs ∨ 𝑁 = 0s ) ) → 𝑁 ∈ ℕs ) ) ) |
| 28 |
27
|
com23 |
⊢ ( 𝑁 ∈ No → ( ( 𝑁 ∈ ℕs ∨ ( ( -us ‘ 𝑁 ) ∈ ℕs ∨ 𝑁 = 0s ) ) → ( 0s <s 𝑁 → 𝑁 ∈ ℕs ) ) ) |
| 29 |
28
|
imp31 |
⊢ ( ( ( 𝑁 ∈ No ∧ ( 𝑁 ∈ ℕs ∨ ( ( -us ‘ 𝑁 ) ∈ ℕs ∨ 𝑁 = 0s ) ) ) ∧ 0s <s 𝑁 ) → 𝑁 ∈ ℕs ) |
| 30 |
4 29
|
impbii |
⊢ ( 𝑁 ∈ ℕs ↔ ( ( 𝑁 ∈ No ∧ ( 𝑁 ∈ ℕs ∨ ( ( -us ‘ 𝑁 ) ∈ ℕs ∨ 𝑁 = 0s ) ) ) ∧ 0s <s 𝑁 ) ) |
| 31 |
|
elzs2 |
⊢ ( 𝑁 ∈ ℤs ↔ ( 𝑁 ∈ No ∧ ( 𝑁 ∈ ℕs ∨ 𝑁 = 0s ∨ ( -us ‘ 𝑁 ) ∈ ℕs ) ) ) |
| 32 |
|
3orcomb |
⊢ ( ( 𝑁 ∈ ℕs ∨ 𝑁 = 0s ∨ ( -us ‘ 𝑁 ) ∈ ℕs ) ↔ ( 𝑁 ∈ ℕs ∨ ( -us ‘ 𝑁 ) ∈ ℕs ∨ 𝑁 = 0s ) ) |
| 33 |
|
3orass |
⊢ ( ( 𝑁 ∈ ℕs ∨ ( -us ‘ 𝑁 ) ∈ ℕs ∨ 𝑁 = 0s ) ↔ ( 𝑁 ∈ ℕs ∨ ( ( -us ‘ 𝑁 ) ∈ ℕs ∨ 𝑁 = 0s ) ) ) |
| 34 |
32 33
|
bitri |
⊢ ( ( 𝑁 ∈ ℕs ∨ 𝑁 = 0s ∨ ( -us ‘ 𝑁 ) ∈ ℕs ) ↔ ( 𝑁 ∈ ℕs ∨ ( ( -us ‘ 𝑁 ) ∈ ℕs ∨ 𝑁 = 0s ) ) ) |
| 35 |
34
|
anbi2i |
⊢ ( ( 𝑁 ∈ No ∧ ( 𝑁 ∈ ℕs ∨ 𝑁 = 0s ∨ ( -us ‘ 𝑁 ) ∈ ℕs ) ) ↔ ( 𝑁 ∈ No ∧ ( 𝑁 ∈ ℕs ∨ ( ( -us ‘ 𝑁 ) ∈ ℕs ∨ 𝑁 = 0s ) ) ) ) |
| 36 |
31 35
|
bitri |
⊢ ( 𝑁 ∈ ℤs ↔ ( 𝑁 ∈ No ∧ ( 𝑁 ∈ ℕs ∨ ( ( -us ‘ 𝑁 ) ∈ ℕs ∨ 𝑁 = 0s ) ) ) ) |
| 37 |
36
|
anbi1i |
⊢ ( ( 𝑁 ∈ ℤs ∧ 0s <s 𝑁 ) ↔ ( ( 𝑁 ∈ No ∧ ( 𝑁 ∈ ℕs ∨ ( ( -us ‘ 𝑁 ) ∈ ℕs ∨ 𝑁 = 0s ) ) ) ∧ 0s <s 𝑁 ) ) |
| 38 |
30 37
|
bitr4i |
⊢ ( 𝑁 ∈ ℕs ↔ ( 𝑁 ∈ ℤs ∧ 0s <s 𝑁 ) ) |