Metamath Proof Explorer


Theorem elznns

Description: Surreal integer property expressed in terms of positive integers and non-negative integers. (Contributed by Scott Fenton, 25-Jul-2025)

Ref Expression
Assertion elznns ( 𝑁 ∈ ℤs ↔ ( 𝑁 No ∧ ( 𝑁 ∈ ℕs ∨ ( -us𝑁 ) ∈ ℕ0s ) ) )

Proof

Step Hyp Ref Expression
1 elzs2 ( 𝑁 ∈ ℤs ↔ ( 𝑁 No ∧ ( 𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁 ) ∈ ℕs ) ) )
2 3orass ( ( 𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁 ) ∈ ℕs ) ↔ ( 𝑁 ∈ ℕs ∨ ( 𝑁 = 0s ∨ ( -us𝑁 ) ∈ ℕs ) ) )
3 eln0s ( ( -us𝑁 ) ∈ ℕ0s ↔ ( ( -us𝑁 ) ∈ ℕs ∨ ( -us𝑁 ) = 0s ) )
4 negs0s ( -us ‘ 0s ) = 0s
5 4 eqeq2i ( ( -us𝑁 ) = ( -us ‘ 0s ) ↔ ( -us𝑁 ) = 0s )
6 0sno 0s No
7 negs11 ( ( 𝑁 No ∧ 0s No ) → ( ( -us𝑁 ) = ( -us ‘ 0s ) ↔ 𝑁 = 0s ) )
8 6 7 mpan2 ( 𝑁 No → ( ( -us𝑁 ) = ( -us ‘ 0s ) ↔ 𝑁 = 0s ) )
9 5 8 bitr3id ( 𝑁 No → ( ( -us𝑁 ) = 0s𝑁 = 0s ) )
10 9 orbi2d ( 𝑁 No → ( ( ( -us𝑁 ) ∈ ℕs ∨ ( -us𝑁 ) = 0s ) ↔ ( ( -us𝑁 ) ∈ ℕs𝑁 = 0s ) ) )
11 3 10 bitrid ( 𝑁 No → ( ( -us𝑁 ) ∈ ℕ0s ↔ ( ( -us𝑁 ) ∈ ℕs𝑁 = 0s ) ) )
12 orcom ( ( ( -us𝑁 ) ∈ ℕs𝑁 = 0s ) ↔ ( 𝑁 = 0s ∨ ( -us𝑁 ) ∈ ℕs ) )
13 11 12 bitrdi ( 𝑁 No → ( ( -us𝑁 ) ∈ ℕ0s ↔ ( 𝑁 = 0s ∨ ( -us𝑁 ) ∈ ℕs ) ) )
14 13 orbi2d ( 𝑁 No → ( ( 𝑁 ∈ ℕs ∨ ( -us𝑁 ) ∈ ℕ0s ) ↔ ( 𝑁 ∈ ℕs ∨ ( 𝑁 = 0s ∨ ( -us𝑁 ) ∈ ℕs ) ) ) )
15 2 14 bitr4id ( 𝑁 No → ( ( 𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁 ) ∈ ℕs ) ↔ ( 𝑁 ∈ ℕs ∨ ( -us𝑁 ) ∈ ℕ0s ) ) )
16 15 pm5.32i ( ( 𝑁 No ∧ ( 𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁 ) ∈ ℕs ) ) ↔ ( 𝑁 No ∧ ( 𝑁 ∈ ℕs ∨ ( -us𝑁 ) ∈ ℕ0s ) ) )
17 1 16 bitri ( 𝑁 ∈ ℤs ↔ ( 𝑁 No ∧ ( 𝑁 ∈ ℕs ∨ ( -us𝑁 ) ∈ ℕ0s ) ) )