Step |
Hyp |
Ref |
Expression |
1 |
|
elzs2 |
⊢ ( 𝑁 ∈ ℤs ↔ ( 𝑁 ∈ No ∧ ( 𝑁 ∈ ℕs ∨ 𝑁 = 0s ∨ ( -us ‘ 𝑁 ) ∈ ℕs ) ) ) |
2 |
|
3orass |
⊢ ( ( 𝑁 ∈ ℕs ∨ 𝑁 = 0s ∨ ( -us ‘ 𝑁 ) ∈ ℕs ) ↔ ( 𝑁 ∈ ℕs ∨ ( 𝑁 = 0s ∨ ( -us ‘ 𝑁 ) ∈ ℕs ) ) ) |
3 |
|
eln0s |
⊢ ( ( -us ‘ 𝑁 ) ∈ ℕ0s ↔ ( ( -us ‘ 𝑁 ) ∈ ℕs ∨ ( -us ‘ 𝑁 ) = 0s ) ) |
4 |
|
negs0s |
⊢ ( -us ‘ 0s ) = 0s |
5 |
4
|
eqeq2i |
⊢ ( ( -us ‘ 𝑁 ) = ( -us ‘ 0s ) ↔ ( -us ‘ 𝑁 ) = 0s ) |
6 |
|
0sno |
⊢ 0s ∈ No |
7 |
|
negs11 |
⊢ ( ( 𝑁 ∈ No ∧ 0s ∈ No ) → ( ( -us ‘ 𝑁 ) = ( -us ‘ 0s ) ↔ 𝑁 = 0s ) ) |
8 |
6 7
|
mpan2 |
⊢ ( 𝑁 ∈ No → ( ( -us ‘ 𝑁 ) = ( -us ‘ 0s ) ↔ 𝑁 = 0s ) ) |
9 |
5 8
|
bitr3id |
⊢ ( 𝑁 ∈ No → ( ( -us ‘ 𝑁 ) = 0s ↔ 𝑁 = 0s ) ) |
10 |
9
|
orbi2d |
⊢ ( 𝑁 ∈ No → ( ( ( -us ‘ 𝑁 ) ∈ ℕs ∨ ( -us ‘ 𝑁 ) = 0s ) ↔ ( ( -us ‘ 𝑁 ) ∈ ℕs ∨ 𝑁 = 0s ) ) ) |
11 |
3 10
|
bitrid |
⊢ ( 𝑁 ∈ No → ( ( -us ‘ 𝑁 ) ∈ ℕ0s ↔ ( ( -us ‘ 𝑁 ) ∈ ℕs ∨ 𝑁 = 0s ) ) ) |
12 |
|
orcom |
⊢ ( ( ( -us ‘ 𝑁 ) ∈ ℕs ∨ 𝑁 = 0s ) ↔ ( 𝑁 = 0s ∨ ( -us ‘ 𝑁 ) ∈ ℕs ) ) |
13 |
11 12
|
bitrdi |
⊢ ( 𝑁 ∈ No → ( ( -us ‘ 𝑁 ) ∈ ℕ0s ↔ ( 𝑁 = 0s ∨ ( -us ‘ 𝑁 ) ∈ ℕs ) ) ) |
14 |
13
|
orbi2d |
⊢ ( 𝑁 ∈ No → ( ( 𝑁 ∈ ℕs ∨ ( -us ‘ 𝑁 ) ∈ ℕ0s ) ↔ ( 𝑁 ∈ ℕs ∨ ( 𝑁 = 0s ∨ ( -us ‘ 𝑁 ) ∈ ℕs ) ) ) ) |
15 |
2 14
|
bitr4id |
⊢ ( 𝑁 ∈ No → ( ( 𝑁 ∈ ℕs ∨ 𝑁 = 0s ∨ ( -us ‘ 𝑁 ) ∈ ℕs ) ↔ ( 𝑁 ∈ ℕs ∨ ( -us ‘ 𝑁 ) ∈ ℕ0s ) ) ) |
16 |
15
|
pm5.32i |
⊢ ( ( 𝑁 ∈ No ∧ ( 𝑁 ∈ ℕs ∨ 𝑁 = 0s ∨ ( -us ‘ 𝑁 ) ∈ ℕs ) ) ↔ ( 𝑁 ∈ No ∧ ( 𝑁 ∈ ℕs ∨ ( -us ‘ 𝑁 ) ∈ ℕ0s ) ) ) |
17 |
1 16
|
bitri |
⊢ ( 𝑁 ∈ ℤs ↔ ( 𝑁 ∈ No ∧ ( 𝑁 ∈ ℕs ∨ ( -us ‘ 𝑁 ) ∈ ℕ0s ) ) ) |