Metamath Proof Explorer


Theorem zn0subs

Description: The non-negative difference of surreal integers is a non-negative integer. (Contributed by Scott Fenton, 25-Jul-2025)

Ref Expression
Assertion zn0subs ( ( 𝑀 ∈ ℤs𝑁 ∈ ℤs ) → ( 𝑀 ≤s 𝑁 ↔ ( 𝑁 -s 𝑀 ) ∈ ℕ0s ) )

Proof

Step Hyp Ref Expression
1 zno ( 𝑁 ∈ ℤs𝑁 No )
2 1 adantr ( ( 𝑁 ∈ ℤs𝑀 ∈ ℤs ) → 𝑁 No )
3 zno ( 𝑀 ∈ ℤs𝑀 No )
4 3 adantl ( ( 𝑁 ∈ ℤs𝑀 ∈ ℤs ) → 𝑀 No )
5 2 4 subsge0d ( ( 𝑁 ∈ ℤs𝑀 ∈ ℤs ) → ( 0s ≤s ( 𝑁 -s 𝑀 ) ↔ 𝑀 ≤s 𝑁 ) )
6 simpl ( ( 𝑁 ∈ ℤs𝑀 ∈ ℤs ) → 𝑁 ∈ ℤs )
7 simpr ( ( 𝑁 ∈ ℤs𝑀 ∈ ℤs ) → 𝑀 ∈ ℤs )
8 6 7 zsubscld ( ( 𝑁 ∈ ℤs𝑀 ∈ ℤs ) → ( 𝑁 -s 𝑀 ) ∈ ℤs )
9 8 biantrurd ( ( 𝑁 ∈ ℤs𝑀 ∈ ℤs ) → ( 0s ≤s ( 𝑁 -s 𝑀 ) ↔ ( ( 𝑁 -s 𝑀 ) ∈ ℤs ∧ 0s ≤s ( 𝑁 -s 𝑀 ) ) ) )
10 5 9 bitr3d ( ( 𝑁 ∈ ℤs𝑀 ∈ ℤs ) → ( 𝑀 ≤s 𝑁 ↔ ( ( 𝑁 -s 𝑀 ) ∈ ℤs ∧ 0s ≤s ( 𝑁 -s 𝑀 ) ) ) )
11 10 ancoms ( ( 𝑀 ∈ ℤs𝑁 ∈ ℤs ) → ( 𝑀 ≤s 𝑁 ↔ ( ( 𝑁 -s 𝑀 ) ∈ ℤs ∧ 0s ≤s ( 𝑁 -s 𝑀 ) ) ) )
12 eln0zs ( ( 𝑁 -s 𝑀 ) ∈ ℕ0s ↔ ( ( 𝑁 -s 𝑀 ) ∈ ℤs ∧ 0s ≤s ( 𝑁 -s 𝑀 ) ) )
13 11 12 bitr4di ( ( 𝑀 ∈ ℤs𝑁 ∈ ℤs ) → ( 𝑀 ≤s 𝑁 ↔ ( 𝑁 -s 𝑀 ) ∈ ℕ0s ) )