Step |
Hyp |
Ref |
Expression |
1 |
|
zno |
⊢ ( 𝑁 ∈ ℤs → 𝑁 ∈ No ) |
2 |
1
|
adantr |
⊢ ( ( 𝑁 ∈ ℤs ∧ 𝑀 ∈ ℤs ) → 𝑁 ∈ No ) |
3 |
|
zno |
⊢ ( 𝑀 ∈ ℤs → 𝑀 ∈ No ) |
4 |
3
|
adantl |
⊢ ( ( 𝑁 ∈ ℤs ∧ 𝑀 ∈ ℤs ) → 𝑀 ∈ No ) |
5 |
2 4
|
subsge0d |
⊢ ( ( 𝑁 ∈ ℤs ∧ 𝑀 ∈ ℤs ) → ( 0s ≤s ( 𝑁 -s 𝑀 ) ↔ 𝑀 ≤s 𝑁 ) ) |
6 |
|
simpl |
⊢ ( ( 𝑁 ∈ ℤs ∧ 𝑀 ∈ ℤs ) → 𝑁 ∈ ℤs ) |
7 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℤs ∧ 𝑀 ∈ ℤs ) → 𝑀 ∈ ℤs ) |
8 |
6 7
|
zsubscld |
⊢ ( ( 𝑁 ∈ ℤs ∧ 𝑀 ∈ ℤs ) → ( 𝑁 -s 𝑀 ) ∈ ℤs ) |
9 |
8
|
biantrurd |
⊢ ( ( 𝑁 ∈ ℤs ∧ 𝑀 ∈ ℤs ) → ( 0s ≤s ( 𝑁 -s 𝑀 ) ↔ ( ( 𝑁 -s 𝑀 ) ∈ ℤs ∧ 0s ≤s ( 𝑁 -s 𝑀 ) ) ) ) |
10 |
5 9
|
bitr3d |
⊢ ( ( 𝑁 ∈ ℤs ∧ 𝑀 ∈ ℤs ) → ( 𝑀 ≤s 𝑁 ↔ ( ( 𝑁 -s 𝑀 ) ∈ ℤs ∧ 0s ≤s ( 𝑁 -s 𝑀 ) ) ) ) |
11 |
10
|
ancoms |
⊢ ( ( 𝑀 ∈ ℤs ∧ 𝑁 ∈ ℤs ) → ( 𝑀 ≤s 𝑁 ↔ ( ( 𝑁 -s 𝑀 ) ∈ ℤs ∧ 0s ≤s ( 𝑁 -s 𝑀 ) ) ) ) |
12 |
|
eln0zs |
⊢ ( ( 𝑁 -s 𝑀 ) ∈ ℕ0s ↔ ( ( 𝑁 -s 𝑀 ) ∈ ℤs ∧ 0s ≤s ( 𝑁 -s 𝑀 ) ) ) |
13 |
11 12
|
bitr4di |
⊢ ( ( 𝑀 ∈ ℤs ∧ 𝑁 ∈ ℤs ) → ( 𝑀 ≤s 𝑁 ↔ ( 𝑁 -s 𝑀 ) ∈ ℕ0s ) ) |