| Step | Hyp | Ref | Expression | 
						
							| 1 |  | peano5uzs.1 | ⊢ ( 𝜑  →  𝑁  ∈  ℤs ) | 
						
							| 2 |  | peano5uzs.2 | ⊢ ( 𝜑  →  𝑁  ∈  𝐴 ) | 
						
							| 3 |  | peano5uzs.3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥  +s   1s  )  ∈  𝐴 ) | 
						
							| 4 |  | breq2 | ⊢ ( 𝑘  =  𝑛  →  ( 𝑁  ≤s  𝑘  ↔  𝑁  ≤s  𝑛 ) ) | 
						
							| 5 | 4 | elrab | ⊢ ( 𝑛  ∈  { 𝑘  ∈  ℤs  ∣  𝑁  ≤s  𝑘 }  ↔  ( 𝑛  ∈  ℤs  ∧  𝑁  ≤s  𝑛 ) ) | 
						
							| 6 |  | zno | ⊢ ( 𝑛  ∈  ℤs  →  𝑛  ∈   No  ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝑛  ∈  ℤs  ∧  𝑁  ≤s  𝑛 )  →  𝑛  ∈   No  ) | 
						
							| 8 | 1 | znod | ⊢ ( 𝜑  →  𝑁  ∈   No  ) | 
						
							| 9 |  | npcans | ⊢ ( ( 𝑛  ∈   No   ∧  𝑁  ∈   No  )  →  ( ( 𝑛  -s  𝑁 )  +s  𝑁 )  =  𝑛 ) | 
						
							| 10 | 7 8 9 | syl2anr | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℤs  ∧  𝑁  ≤s  𝑛 ) )  →  ( ( 𝑛  -s  𝑁 )  +s  𝑁 )  =  𝑛 ) | 
						
							| 11 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℤs  ∧  𝑁  ≤s  𝑛 ) )  →  𝑛  ∈  ℤs ) | 
						
							| 12 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℤs  ∧  𝑁  ≤s  𝑛 ) )  →  𝑁  ∈  ℤs ) | 
						
							| 13 | 11 12 | zsubscld | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℤs  ∧  𝑁  ≤s  𝑛 ) )  →  ( 𝑛  -s  𝑁 )  ∈  ℤs ) | 
						
							| 14 | 6 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℤs )  →  𝑛  ∈   No  ) | 
						
							| 15 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℤs )  →  𝑁  ∈   No  ) | 
						
							| 16 | 14 15 | subsge0d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℤs )  →  (  0s   ≤s  ( 𝑛  -s  𝑁 )  ↔  𝑁  ≤s  𝑛 ) ) | 
						
							| 17 | 16 | biimpar | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℤs )  ∧  𝑁  ≤s  𝑛 )  →   0s   ≤s  ( 𝑛  -s  𝑁 ) ) | 
						
							| 18 | 17 | anasss | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℤs  ∧  𝑁  ≤s  𝑛 ) )  →   0s   ≤s  ( 𝑛  -s  𝑁 ) ) | 
						
							| 19 | 13 18 | jca | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℤs  ∧  𝑁  ≤s  𝑛 ) )  →  ( ( 𝑛  -s  𝑁 )  ∈  ℤs  ∧   0s   ≤s  ( 𝑛  -s  𝑁 ) ) ) | 
						
							| 20 |  | eln0zs | ⊢ ( ( 𝑛  -s  𝑁 )  ∈  ℕ0s  ↔  ( ( 𝑛  -s  𝑁 )  ∈  ℤs  ∧   0s   ≤s  ( 𝑛  -s  𝑁 ) ) ) | 
						
							| 21 | 19 20 | sylibr | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℤs  ∧  𝑁  ≤s  𝑛 ) )  →  ( 𝑛  -s  𝑁 )  ∈  ℕ0s ) | 
						
							| 22 | 21 | ex | ⊢ ( 𝜑  →  ( ( 𝑛  ∈  ℤs  ∧  𝑁  ≤s  𝑛 )  →  ( 𝑛  -s  𝑁 )  ∈  ℕ0s ) ) | 
						
							| 23 |  | oveq1 | ⊢ ( 𝑧  =   0s   →  ( 𝑧  +s  𝑁 )  =  (  0s   +s  𝑁 ) ) | 
						
							| 24 | 23 | eleq1d | ⊢ ( 𝑧  =   0s   →  ( ( 𝑧  +s  𝑁 )  ∈  𝐴  ↔  (  0s   +s  𝑁 )  ∈  𝐴 ) ) | 
						
							| 25 | 24 | imbi2d | ⊢ ( 𝑧  =   0s   →  ( ( 𝜑  →  ( 𝑧  +s  𝑁 )  ∈  𝐴 )  ↔  ( 𝜑  →  (  0s   +s  𝑁 )  ∈  𝐴 ) ) ) | 
						
							| 26 |  | oveq1 | ⊢ ( 𝑧  =  𝑦  →  ( 𝑧  +s  𝑁 )  =  ( 𝑦  +s  𝑁 ) ) | 
						
							| 27 | 26 | eleq1d | ⊢ ( 𝑧  =  𝑦  →  ( ( 𝑧  +s  𝑁 )  ∈  𝐴  ↔  ( 𝑦  +s  𝑁 )  ∈  𝐴 ) ) | 
						
							| 28 | 27 | imbi2d | ⊢ ( 𝑧  =  𝑦  →  ( ( 𝜑  →  ( 𝑧  +s  𝑁 )  ∈  𝐴 )  ↔  ( 𝜑  →  ( 𝑦  +s  𝑁 )  ∈  𝐴 ) ) ) | 
						
							| 29 |  | oveq1 | ⊢ ( 𝑧  =  ( 𝑦  +s   1s  )  →  ( 𝑧  +s  𝑁 )  =  ( ( 𝑦  +s   1s  )  +s  𝑁 ) ) | 
						
							| 30 | 29 | eleq1d | ⊢ ( 𝑧  =  ( 𝑦  +s   1s  )  →  ( ( 𝑧  +s  𝑁 )  ∈  𝐴  ↔  ( ( 𝑦  +s   1s  )  +s  𝑁 )  ∈  𝐴 ) ) | 
						
							| 31 | 30 | imbi2d | ⊢ ( 𝑧  =  ( 𝑦  +s   1s  )  →  ( ( 𝜑  →  ( 𝑧  +s  𝑁 )  ∈  𝐴 )  ↔  ( 𝜑  →  ( ( 𝑦  +s   1s  )  +s  𝑁 )  ∈  𝐴 ) ) ) | 
						
							| 32 |  | oveq1 | ⊢ ( 𝑧  =  ( 𝑛  -s  𝑁 )  →  ( 𝑧  +s  𝑁 )  =  ( ( 𝑛  -s  𝑁 )  +s  𝑁 ) ) | 
						
							| 33 | 32 | eleq1d | ⊢ ( 𝑧  =  ( 𝑛  -s  𝑁 )  →  ( ( 𝑧  +s  𝑁 )  ∈  𝐴  ↔  ( ( 𝑛  -s  𝑁 )  +s  𝑁 )  ∈  𝐴 ) ) | 
						
							| 34 | 33 | imbi2d | ⊢ ( 𝑧  =  ( 𝑛  -s  𝑁 )  →  ( ( 𝜑  →  ( 𝑧  +s  𝑁 )  ∈  𝐴 )  ↔  ( 𝜑  →  ( ( 𝑛  -s  𝑁 )  +s  𝑁 )  ∈  𝐴 ) ) ) | 
						
							| 35 |  | addslid | ⊢ ( 𝑁  ∈   No   →  (  0s   +s  𝑁 )  =  𝑁 ) | 
						
							| 36 | 8 35 | syl | ⊢ ( 𝜑  →  (  0s   +s  𝑁 )  =  𝑁 ) | 
						
							| 37 | 36 2 | eqeltrd | ⊢ ( 𝜑  →  (  0s   +s  𝑁 )  ∈  𝐴 ) | 
						
							| 38 | 3 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐴 ( 𝑥  +s   1s  )  ∈  𝐴 ) | 
						
							| 39 |  | oveq1 | ⊢ ( 𝑥  =  ( 𝑦  +s  𝑁 )  →  ( 𝑥  +s   1s  )  =  ( ( 𝑦  +s  𝑁 )  +s   1s  ) ) | 
						
							| 40 | 39 | eleq1d | ⊢ ( 𝑥  =  ( 𝑦  +s  𝑁 )  →  ( ( 𝑥  +s   1s  )  ∈  𝐴  ↔  ( ( 𝑦  +s  𝑁 )  +s   1s  )  ∈  𝐴 ) ) | 
						
							| 41 | 40 | rspccv | ⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝑥  +s   1s  )  ∈  𝐴  →  ( ( 𝑦  +s  𝑁 )  ∈  𝐴  →  ( ( 𝑦  +s  𝑁 )  +s   1s  )  ∈  𝐴 ) ) | 
						
							| 42 | 38 41 | syl | ⊢ ( 𝜑  →  ( ( 𝑦  +s  𝑁 )  ∈  𝐴  →  ( ( 𝑦  +s  𝑁 )  +s   1s  )  ∈  𝐴 ) ) | 
						
							| 43 | 42 | adantl | ⊢ ( ( 𝑦  ∈  ℕ0s  ∧  𝜑 )  →  ( ( 𝑦  +s  𝑁 )  ∈  𝐴  →  ( ( 𝑦  +s  𝑁 )  +s   1s  )  ∈  𝐴 ) ) | 
						
							| 44 |  | n0sno | ⊢ ( 𝑦  ∈  ℕ0s  →  𝑦  ∈   No  ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( 𝑦  ∈  ℕ0s  ∧  𝜑 )  →  𝑦  ∈   No  ) | 
						
							| 46 |  | 1sno | ⊢  1s   ∈   No | 
						
							| 47 | 46 | a1i | ⊢ ( ( 𝑦  ∈  ℕ0s  ∧  𝜑 )  →   1s   ∈   No  ) | 
						
							| 48 | 8 | adantl | ⊢ ( ( 𝑦  ∈  ℕ0s  ∧  𝜑 )  →  𝑁  ∈   No  ) | 
						
							| 49 | 45 47 48 | adds32d | ⊢ ( ( 𝑦  ∈  ℕ0s  ∧  𝜑 )  →  ( ( 𝑦  +s   1s  )  +s  𝑁 )  =  ( ( 𝑦  +s  𝑁 )  +s   1s  ) ) | 
						
							| 50 | 49 | eleq1d | ⊢ ( ( 𝑦  ∈  ℕ0s  ∧  𝜑 )  →  ( ( ( 𝑦  +s   1s  )  +s  𝑁 )  ∈  𝐴  ↔  ( ( 𝑦  +s  𝑁 )  +s   1s  )  ∈  𝐴 ) ) | 
						
							| 51 | 43 50 | sylibrd | ⊢ ( ( 𝑦  ∈  ℕ0s  ∧  𝜑 )  →  ( ( 𝑦  +s  𝑁 )  ∈  𝐴  →  ( ( 𝑦  +s   1s  )  +s  𝑁 )  ∈  𝐴 ) ) | 
						
							| 52 | 51 | ex | ⊢ ( 𝑦  ∈  ℕ0s  →  ( 𝜑  →  ( ( 𝑦  +s  𝑁 )  ∈  𝐴  →  ( ( 𝑦  +s   1s  )  +s  𝑁 )  ∈  𝐴 ) ) ) | 
						
							| 53 | 52 | a2d | ⊢ ( 𝑦  ∈  ℕ0s  →  ( ( 𝜑  →  ( 𝑦  +s  𝑁 )  ∈  𝐴 )  →  ( 𝜑  →  ( ( 𝑦  +s   1s  )  +s  𝑁 )  ∈  𝐴 ) ) ) | 
						
							| 54 | 25 28 31 34 37 53 | n0sind | ⊢ ( ( 𝑛  -s  𝑁 )  ∈  ℕ0s  →  ( 𝜑  →  ( ( 𝑛  -s  𝑁 )  +s  𝑁 )  ∈  𝐴 ) ) | 
						
							| 55 | 54 | com12 | ⊢ ( 𝜑  →  ( ( 𝑛  -s  𝑁 )  ∈  ℕ0s  →  ( ( 𝑛  -s  𝑁 )  +s  𝑁 )  ∈  𝐴 ) ) | 
						
							| 56 | 22 55 | syld | ⊢ ( 𝜑  →  ( ( 𝑛  ∈  ℤs  ∧  𝑁  ≤s  𝑛 )  →  ( ( 𝑛  -s  𝑁 )  +s  𝑁 )  ∈  𝐴 ) ) | 
						
							| 57 | 56 | imp | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℤs  ∧  𝑁  ≤s  𝑛 ) )  →  ( ( 𝑛  -s  𝑁 )  +s  𝑁 )  ∈  𝐴 ) | 
						
							| 58 | 10 57 | eqeltrrd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℤs  ∧  𝑁  ≤s  𝑛 ) )  →  𝑛  ∈  𝐴 ) | 
						
							| 59 | 58 | ex | ⊢ ( 𝜑  →  ( ( 𝑛  ∈  ℤs  ∧  𝑁  ≤s  𝑛 )  →  𝑛  ∈  𝐴 ) ) | 
						
							| 60 | 5 59 | biimtrid | ⊢ ( 𝜑  →  ( 𝑛  ∈  { 𝑘  ∈  ℤs  ∣  𝑁  ≤s  𝑘 }  →  𝑛  ∈  𝐴 ) ) | 
						
							| 61 | 60 | ssrdv | ⊢ ( 𝜑  →  { 𝑘  ∈  ℤs  ∣  𝑁  ≤s  𝑘 }  ⊆  𝐴 ) |