| Step |
Hyp |
Ref |
Expression |
| 1 |
|
peano5uzs.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℤs ) |
| 2 |
|
peano5uzs.2 |
⊢ ( 𝜑 → 𝑁 ∈ 𝐴 ) |
| 3 |
|
peano5uzs.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 +s 1s ) ∈ 𝐴 ) |
| 4 |
|
breq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝑁 ≤s 𝑘 ↔ 𝑁 ≤s 𝑛 ) ) |
| 5 |
4
|
elrab |
⊢ ( 𝑛 ∈ { 𝑘 ∈ ℤs ∣ 𝑁 ≤s 𝑘 } ↔ ( 𝑛 ∈ ℤs ∧ 𝑁 ≤s 𝑛 ) ) |
| 6 |
|
zno |
⊢ ( 𝑛 ∈ ℤs → 𝑛 ∈ No ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝑛 ∈ ℤs ∧ 𝑁 ≤s 𝑛 ) → 𝑛 ∈ No ) |
| 8 |
1
|
znod |
⊢ ( 𝜑 → 𝑁 ∈ No ) |
| 9 |
|
npcans |
⊢ ( ( 𝑛 ∈ No ∧ 𝑁 ∈ No ) → ( ( 𝑛 -s 𝑁 ) +s 𝑁 ) = 𝑛 ) |
| 10 |
7 8 9
|
syl2anr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℤs ∧ 𝑁 ≤s 𝑛 ) ) → ( ( 𝑛 -s 𝑁 ) +s 𝑁 ) = 𝑛 ) |
| 11 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℤs ∧ 𝑁 ≤s 𝑛 ) ) → 𝑛 ∈ ℤs ) |
| 12 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℤs ∧ 𝑁 ≤s 𝑛 ) ) → 𝑁 ∈ ℤs ) |
| 13 |
11 12
|
zsubscld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℤs ∧ 𝑁 ≤s 𝑛 ) ) → ( 𝑛 -s 𝑁 ) ∈ ℤs ) |
| 14 |
6
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℤs ) → 𝑛 ∈ No ) |
| 15 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℤs ) → 𝑁 ∈ No ) |
| 16 |
14 15
|
subsge0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℤs ) → ( 0s ≤s ( 𝑛 -s 𝑁 ) ↔ 𝑁 ≤s 𝑛 ) ) |
| 17 |
16
|
biimpar |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℤs ) ∧ 𝑁 ≤s 𝑛 ) → 0s ≤s ( 𝑛 -s 𝑁 ) ) |
| 18 |
17
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℤs ∧ 𝑁 ≤s 𝑛 ) ) → 0s ≤s ( 𝑛 -s 𝑁 ) ) |
| 19 |
13 18
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℤs ∧ 𝑁 ≤s 𝑛 ) ) → ( ( 𝑛 -s 𝑁 ) ∈ ℤs ∧ 0s ≤s ( 𝑛 -s 𝑁 ) ) ) |
| 20 |
|
eln0zs |
⊢ ( ( 𝑛 -s 𝑁 ) ∈ ℕ0s ↔ ( ( 𝑛 -s 𝑁 ) ∈ ℤs ∧ 0s ≤s ( 𝑛 -s 𝑁 ) ) ) |
| 21 |
19 20
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℤs ∧ 𝑁 ≤s 𝑛 ) ) → ( 𝑛 -s 𝑁 ) ∈ ℕ0s ) |
| 22 |
21
|
ex |
⊢ ( 𝜑 → ( ( 𝑛 ∈ ℤs ∧ 𝑁 ≤s 𝑛 ) → ( 𝑛 -s 𝑁 ) ∈ ℕ0s ) ) |
| 23 |
|
oveq1 |
⊢ ( 𝑧 = 0s → ( 𝑧 +s 𝑁 ) = ( 0s +s 𝑁 ) ) |
| 24 |
23
|
eleq1d |
⊢ ( 𝑧 = 0s → ( ( 𝑧 +s 𝑁 ) ∈ 𝐴 ↔ ( 0s +s 𝑁 ) ∈ 𝐴 ) ) |
| 25 |
24
|
imbi2d |
⊢ ( 𝑧 = 0s → ( ( 𝜑 → ( 𝑧 +s 𝑁 ) ∈ 𝐴 ) ↔ ( 𝜑 → ( 0s +s 𝑁 ) ∈ 𝐴 ) ) ) |
| 26 |
|
oveq1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 +s 𝑁 ) = ( 𝑦 +s 𝑁 ) ) |
| 27 |
26
|
eleq1d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑧 +s 𝑁 ) ∈ 𝐴 ↔ ( 𝑦 +s 𝑁 ) ∈ 𝐴 ) ) |
| 28 |
27
|
imbi2d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝜑 → ( 𝑧 +s 𝑁 ) ∈ 𝐴 ) ↔ ( 𝜑 → ( 𝑦 +s 𝑁 ) ∈ 𝐴 ) ) ) |
| 29 |
|
oveq1 |
⊢ ( 𝑧 = ( 𝑦 +s 1s ) → ( 𝑧 +s 𝑁 ) = ( ( 𝑦 +s 1s ) +s 𝑁 ) ) |
| 30 |
29
|
eleq1d |
⊢ ( 𝑧 = ( 𝑦 +s 1s ) → ( ( 𝑧 +s 𝑁 ) ∈ 𝐴 ↔ ( ( 𝑦 +s 1s ) +s 𝑁 ) ∈ 𝐴 ) ) |
| 31 |
30
|
imbi2d |
⊢ ( 𝑧 = ( 𝑦 +s 1s ) → ( ( 𝜑 → ( 𝑧 +s 𝑁 ) ∈ 𝐴 ) ↔ ( 𝜑 → ( ( 𝑦 +s 1s ) +s 𝑁 ) ∈ 𝐴 ) ) ) |
| 32 |
|
oveq1 |
⊢ ( 𝑧 = ( 𝑛 -s 𝑁 ) → ( 𝑧 +s 𝑁 ) = ( ( 𝑛 -s 𝑁 ) +s 𝑁 ) ) |
| 33 |
32
|
eleq1d |
⊢ ( 𝑧 = ( 𝑛 -s 𝑁 ) → ( ( 𝑧 +s 𝑁 ) ∈ 𝐴 ↔ ( ( 𝑛 -s 𝑁 ) +s 𝑁 ) ∈ 𝐴 ) ) |
| 34 |
33
|
imbi2d |
⊢ ( 𝑧 = ( 𝑛 -s 𝑁 ) → ( ( 𝜑 → ( 𝑧 +s 𝑁 ) ∈ 𝐴 ) ↔ ( 𝜑 → ( ( 𝑛 -s 𝑁 ) +s 𝑁 ) ∈ 𝐴 ) ) ) |
| 35 |
|
addslid |
⊢ ( 𝑁 ∈ No → ( 0s +s 𝑁 ) = 𝑁 ) |
| 36 |
8 35
|
syl |
⊢ ( 𝜑 → ( 0s +s 𝑁 ) = 𝑁 ) |
| 37 |
36 2
|
eqeltrd |
⊢ ( 𝜑 → ( 0s +s 𝑁 ) ∈ 𝐴 ) |
| 38 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝑥 +s 1s ) ∈ 𝐴 ) |
| 39 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 +s 𝑁 ) → ( 𝑥 +s 1s ) = ( ( 𝑦 +s 𝑁 ) +s 1s ) ) |
| 40 |
39
|
eleq1d |
⊢ ( 𝑥 = ( 𝑦 +s 𝑁 ) → ( ( 𝑥 +s 1s ) ∈ 𝐴 ↔ ( ( 𝑦 +s 𝑁 ) +s 1s ) ∈ 𝐴 ) ) |
| 41 |
40
|
rspccv |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 +s 1s ) ∈ 𝐴 → ( ( 𝑦 +s 𝑁 ) ∈ 𝐴 → ( ( 𝑦 +s 𝑁 ) +s 1s ) ∈ 𝐴 ) ) |
| 42 |
38 41
|
syl |
⊢ ( 𝜑 → ( ( 𝑦 +s 𝑁 ) ∈ 𝐴 → ( ( 𝑦 +s 𝑁 ) +s 1s ) ∈ 𝐴 ) ) |
| 43 |
42
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( ( 𝑦 +s 𝑁 ) ∈ 𝐴 → ( ( 𝑦 +s 𝑁 ) +s 1s ) ∈ 𝐴 ) ) |
| 44 |
|
n0sno |
⊢ ( 𝑦 ∈ ℕ0s → 𝑦 ∈ No ) |
| 45 |
44
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → 𝑦 ∈ No ) |
| 46 |
|
1sno |
⊢ 1s ∈ No |
| 47 |
46
|
a1i |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → 1s ∈ No ) |
| 48 |
8
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → 𝑁 ∈ No ) |
| 49 |
45 47 48
|
adds32d |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( ( 𝑦 +s 1s ) +s 𝑁 ) = ( ( 𝑦 +s 𝑁 ) +s 1s ) ) |
| 50 |
49
|
eleq1d |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( ( ( 𝑦 +s 1s ) +s 𝑁 ) ∈ 𝐴 ↔ ( ( 𝑦 +s 𝑁 ) +s 1s ) ∈ 𝐴 ) ) |
| 51 |
43 50
|
sylibrd |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( ( 𝑦 +s 𝑁 ) ∈ 𝐴 → ( ( 𝑦 +s 1s ) +s 𝑁 ) ∈ 𝐴 ) ) |
| 52 |
51
|
ex |
⊢ ( 𝑦 ∈ ℕ0s → ( 𝜑 → ( ( 𝑦 +s 𝑁 ) ∈ 𝐴 → ( ( 𝑦 +s 1s ) +s 𝑁 ) ∈ 𝐴 ) ) ) |
| 53 |
52
|
a2d |
⊢ ( 𝑦 ∈ ℕ0s → ( ( 𝜑 → ( 𝑦 +s 𝑁 ) ∈ 𝐴 ) → ( 𝜑 → ( ( 𝑦 +s 1s ) +s 𝑁 ) ∈ 𝐴 ) ) ) |
| 54 |
25 28 31 34 37 53
|
n0sind |
⊢ ( ( 𝑛 -s 𝑁 ) ∈ ℕ0s → ( 𝜑 → ( ( 𝑛 -s 𝑁 ) +s 𝑁 ) ∈ 𝐴 ) ) |
| 55 |
54
|
com12 |
⊢ ( 𝜑 → ( ( 𝑛 -s 𝑁 ) ∈ ℕ0s → ( ( 𝑛 -s 𝑁 ) +s 𝑁 ) ∈ 𝐴 ) ) |
| 56 |
22 55
|
syld |
⊢ ( 𝜑 → ( ( 𝑛 ∈ ℤs ∧ 𝑁 ≤s 𝑛 ) → ( ( 𝑛 -s 𝑁 ) +s 𝑁 ) ∈ 𝐴 ) ) |
| 57 |
56
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℤs ∧ 𝑁 ≤s 𝑛 ) ) → ( ( 𝑛 -s 𝑁 ) +s 𝑁 ) ∈ 𝐴 ) |
| 58 |
10 57
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℤs ∧ 𝑁 ≤s 𝑛 ) ) → 𝑛 ∈ 𝐴 ) |
| 59 |
58
|
ex |
⊢ ( 𝜑 → ( ( 𝑛 ∈ ℤs ∧ 𝑁 ≤s 𝑛 ) → 𝑛 ∈ 𝐴 ) ) |
| 60 |
5 59
|
biimtrid |
⊢ ( 𝜑 → ( 𝑛 ∈ { 𝑘 ∈ ℤs ∣ 𝑁 ≤s 𝑘 } → 𝑛 ∈ 𝐴 ) ) |
| 61 |
60
|
ssrdv |
⊢ ( 𝜑 → { 𝑘 ∈ ℤs ∣ 𝑁 ≤s 𝑘 } ⊆ 𝐴 ) |