| Step | Hyp | Ref | Expression | 
						
							| 1 |  | peano5uzs.1 |  |-  ( ph -> N e. ZZ_s ) | 
						
							| 2 |  | peano5uzs.2 |  |-  ( ph -> N e. A ) | 
						
							| 3 |  | peano5uzs.3 |  |-  ( ( ph /\ x e. A ) -> ( x +s 1s ) e. A ) | 
						
							| 4 |  | breq2 |  |-  ( k = n -> ( N <_s k <-> N <_s n ) ) | 
						
							| 5 | 4 | elrab |  |-  ( n e. { k e. ZZ_s | N <_s k } <-> ( n e. ZZ_s /\ N <_s n ) ) | 
						
							| 6 |  | zno |  |-  ( n e. ZZ_s -> n e. No ) | 
						
							| 7 | 6 | adantr |  |-  ( ( n e. ZZ_s /\ N <_s n ) -> n e. No ) | 
						
							| 8 | 1 | znod |  |-  ( ph -> N e. No ) | 
						
							| 9 |  | npcans |  |-  ( ( n e. No /\ N e. No ) -> ( ( n -s N ) +s N ) = n ) | 
						
							| 10 | 7 8 9 | syl2anr |  |-  ( ( ph /\ ( n e. ZZ_s /\ N <_s n ) ) -> ( ( n -s N ) +s N ) = n ) | 
						
							| 11 |  | simprl |  |-  ( ( ph /\ ( n e. ZZ_s /\ N <_s n ) ) -> n e. ZZ_s ) | 
						
							| 12 | 1 | adantr |  |-  ( ( ph /\ ( n e. ZZ_s /\ N <_s n ) ) -> N e. ZZ_s ) | 
						
							| 13 | 11 12 | zsubscld |  |-  ( ( ph /\ ( n e. ZZ_s /\ N <_s n ) ) -> ( n -s N ) e. ZZ_s ) | 
						
							| 14 | 6 | adantl |  |-  ( ( ph /\ n e. ZZ_s ) -> n e. No ) | 
						
							| 15 | 8 | adantr |  |-  ( ( ph /\ n e. ZZ_s ) -> N e. No ) | 
						
							| 16 | 14 15 | subsge0d |  |-  ( ( ph /\ n e. ZZ_s ) -> ( 0s <_s ( n -s N ) <-> N <_s n ) ) | 
						
							| 17 | 16 | biimpar |  |-  ( ( ( ph /\ n e. ZZ_s ) /\ N <_s n ) -> 0s <_s ( n -s N ) ) | 
						
							| 18 | 17 | anasss |  |-  ( ( ph /\ ( n e. ZZ_s /\ N <_s n ) ) -> 0s <_s ( n -s N ) ) | 
						
							| 19 | 13 18 | jca |  |-  ( ( ph /\ ( n e. ZZ_s /\ N <_s n ) ) -> ( ( n -s N ) e. ZZ_s /\ 0s <_s ( n -s N ) ) ) | 
						
							| 20 |  | eln0zs |  |-  ( ( n -s N ) e. NN0_s <-> ( ( n -s N ) e. ZZ_s /\ 0s <_s ( n -s N ) ) ) | 
						
							| 21 | 19 20 | sylibr |  |-  ( ( ph /\ ( n e. ZZ_s /\ N <_s n ) ) -> ( n -s N ) e. NN0_s ) | 
						
							| 22 | 21 | ex |  |-  ( ph -> ( ( n e. ZZ_s /\ N <_s n ) -> ( n -s N ) e. NN0_s ) ) | 
						
							| 23 |  | oveq1 |  |-  ( z = 0s -> ( z +s N ) = ( 0s +s N ) ) | 
						
							| 24 | 23 | eleq1d |  |-  ( z = 0s -> ( ( z +s N ) e. A <-> ( 0s +s N ) e. A ) ) | 
						
							| 25 | 24 | imbi2d |  |-  ( z = 0s -> ( ( ph -> ( z +s N ) e. A ) <-> ( ph -> ( 0s +s N ) e. A ) ) ) | 
						
							| 26 |  | oveq1 |  |-  ( z = y -> ( z +s N ) = ( y +s N ) ) | 
						
							| 27 | 26 | eleq1d |  |-  ( z = y -> ( ( z +s N ) e. A <-> ( y +s N ) e. A ) ) | 
						
							| 28 | 27 | imbi2d |  |-  ( z = y -> ( ( ph -> ( z +s N ) e. A ) <-> ( ph -> ( y +s N ) e. A ) ) ) | 
						
							| 29 |  | oveq1 |  |-  ( z = ( y +s 1s ) -> ( z +s N ) = ( ( y +s 1s ) +s N ) ) | 
						
							| 30 | 29 | eleq1d |  |-  ( z = ( y +s 1s ) -> ( ( z +s N ) e. A <-> ( ( y +s 1s ) +s N ) e. A ) ) | 
						
							| 31 | 30 | imbi2d |  |-  ( z = ( y +s 1s ) -> ( ( ph -> ( z +s N ) e. A ) <-> ( ph -> ( ( y +s 1s ) +s N ) e. A ) ) ) | 
						
							| 32 |  | oveq1 |  |-  ( z = ( n -s N ) -> ( z +s N ) = ( ( n -s N ) +s N ) ) | 
						
							| 33 | 32 | eleq1d |  |-  ( z = ( n -s N ) -> ( ( z +s N ) e. A <-> ( ( n -s N ) +s N ) e. A ) ) | 
						
							| 34 | 33 | imbi2d |  |-  ( z = ( n -s N ) -> ( ( ph -> ( z +s N ) e. A ) <-> ( ph -> ( ( n -s N ) +s N ) e. A ) ) ) | 
						
							| 35 |  | addslid |  |-  ( N e. No -> ( 0s +s N ) = N ) | 
						
							| 36 | 8 35 | syl |  |-  ( ph -> ( 0s +s N ) = N ) | 
						
							| 37 | 36 2 | eqeltrd |  |-  ( ph -> ( 0s +s N ) e. A ) | 
						
							| 38 | 3 | ralrimiva |  |-  ( ph -> A. x e. A ( x +s 1s ) e. A ) | 
						
							| 39 |  | oveq1 |  |-  ( x = ( y +s N ) -> ( x +s 1s ) = ( ( y +s N ) +s 1s ) ) | 
						
							| 40 | 39 | eleq1d |  |-  ( x = ( y +s N ) -> ( ( x +s 1s ) e. A <-> ( ( y +s N ) +s 1s ) e. A ) ) | 
						
							| 41 | 40 | rspccv |  |-  ( A. x e. A ( x +s 1s ) e. A -> ( ( y +s N ) e. A -> ( ( y +s N ) +s 1s ) e. A ) ) | 
						
							| 42 | 38 41 | syl |  |-  ( ph -> ( ( y +s N ) e. A -> ( ( y +s N ) +s 1s ) e. A ) ) | 
						
							| 43 | 42 | adantl |  |-  ( ( y e. NN0_s /\ ph ) -> ( ( y +s N ) e. A -> ( ( y +s N ) +s 1s ) e. A ) ) | 
						
							| 44 |  | n0sno |  |-  ( y e. NN0_s -> y e. No ) | 
						
							| 45 | 44 | adantr |  |-  ( ( y e. NN0_s /\ ph ) -> y e. No ) | 
						
							| 46 |  | 1sno |  |-  1s e. No | 
						
							| 47 | 46 | a1i |  |-  ( ( y e. NN0_s /\ ph ) -> 1s e. No ) | 
						
							| 48 | 8 | adantl |  |-  ( ( y e. NN0_s /\ ph ) -> N e. No ) | 
						
							| 49 | 45 47 48 | adds32d |  |-  ( ( y e. NN0_s /\ ph ) -> ( ( y +s 1s ) +s N ) = ( ( y +s N ) +s 1s ) ) | 
						
							| 50 | 49 | eleq1d |  |-  ( ( y e. NN0_s /\ ph ) -> ( ( ( y +s 1s ) +s N ) e. A <-> ( ( y +s N ) +s 1s ) e. A ) ) | 
						
							| 51 | 43 50 | sylibrd |  |-  ( ( y e. NN0_s /\ ph ) -> ( ( y +s N ) e. A -> ( ( y +s 1s ) +s N ) e. A ) ) | 
						
							| 52 | 51 | ex |  |-  ( y e. NN0_s -> ( ph -> ( ( y +s N ) e. A -> ( ( y +s 1s ) +s N ) e. A ) ) ) | 
						
							| 53 | 52 | a2d |  |-  ( y e. NN0_s -> ( ( ph -> ( y +s N ) e. A ) -> ( ph -> ( ( y +s 1s ) +s N ) e. A ) ) ) | 
						
							| 54 | 25 28 31 34 37 53 | n0sind |  |-  ( ( n -s N ) e. NN0_s -> ( ph -> ( ( n -s N ) +s N ) e. A ) ) | 
						
							| 55 | 54 | com12 |  |-  ( ph -> ( ( n -s N ) e. NN0_s -> ( ( n -s N ) +s N ) e. A ) ) | 
						
							| 56 | 22 55 | syld |  |-  ( ph -> ( ( n e. ZZ_s /\ N <_s n ) -> ( ( n -s N ) +s N ) e. A ) ) | 
						
							| 57 | 56 | imp |  |-  ( ( ph /\ ( n e. ZZ_s /\ N <_s n ) ) -> ( ( n -s N ) +s N ) e. A ) | 
						
							| 58 | 10 57 | eqeltrrd |  |-  ( ( ph /\ ( n e. ZZ_s /\ N <_s n ) ) -> n e. A ) | 
						
							| 59 | 58 | ex |  |-  ( ph -> ( ( n e. ZZ_s /\ N <_s n ) -> n e. A ) ) | 
						
							| 60 | 5 59 | biimtrid |  |-  ( ph -> ( n e. { k e. ZZ_s | N <_s k } -> n e. A ) ) | 
						
							| 61 | 60 | ssrdv |  |-  ( ph -> { k e. ZZ_s | N <_s k } C_ A ) |