| Step |
Hyp |
Ref |
Expression |
| 1 |
|
peano5uzs.1 |
|- ( ph -> N e. ZZ_s ) |
| 2 |
|
peano5uzs.2 |
|- ( ph -> N e. A ) |
| 3 |
|
peano5uzs.3 |
|- ( ( ph /\ x e. A ) -> ( x +s 1s ) e. A ) |
| 4 |
|
breq2 |
|- ( k = n -> ( N <_s k <-> N <_s n ) ) |
| 5 |
4
|
elrab |
|- ( n e. { k e. ZZ_s | N <_s k } <-> ( n e. ZZ_s /\ N <_s n ) ) |
| 6 |
|
zno |
|- ( n e. ZZ_s -> n e. No ) |
| 7 |
6
|
adantr |
|- ( ( n e. ZZ_s /\ N <_s n ) -> n e. No ) |
| 8 |
1
|
znod |
|- ( ph -> N e. No ) |
| 9 |
|
npcans |
|- ( ( n e. No /\ N e. No ) -> ( ( n -s N ) +s N ) = n ) |
| 10 |
7 8 9
|
syl2anr |
|- ( ( ph /\ ( n e. ZZ_s /\ N <_s n ) ) -> ( ( n -s N ) +s N ) = n ) |
| 11 |
|
simprl |
|- ( ( ph /\ ( n e. ZZ_s /\ N <_s n ) ) -> n e. ZZ_s ) |
| 12 |
1
|
adantr |
|- ( ( ph /\ ( n e. ZZ_s /\ N <_s n ) ) -> N e. ZZ_s ) |
| 13 |
11 12
|
zsubscld |
|- ( ( ph /\ ( n e. ZZ_s /\ N <_s n ) ) -> ( n -s N ) e. ZZ_s ) |
| 14 |
6
|
adantl |
|- ( ( ph /\ n e. ZZ_s ) -> n e. No ) |
| 15 |
8
|
adantr |
|- ( ( ph /\ n e. ZZ_s ) -> N e. No ) |
| 16 |
14 15
|
subsge0d |
|- ( ( ph /\ n e. ZZ_s ) -> ( 0s <_s ( n -s N ) <-> N <_s n ) ) |
| 17 |
16
|
biimpar |
|- ( ( ( ph /\ n e. ZZ_s ) /\ N <_s n ) -> 0s <_s ( n -s N ) ) |
| 18 |
17
|
anasss |
|- ( ( ph /\ ( n e. ZZ_s /\ N <_s n ) ) -> 0s <_s ( n -s N ) ) |
| 19 |
13 18
|
jca |
|- ( ( ph /\ ( n e. ZZ_s /\ N <_s n ) ) -> ( ( n -s N ) e. ZZ_s /\ 0s <_s ( n -s N ) ) ) |
| 20 |
|
eln0zs |
|- ( ( n -s N ) e. NN0_s <-> ( ( n -s N ) e. ZZ_s /\ 0s <_s ( n -s N ) ) ) |
| 21 |
19 20
|
sylibr |
|- ( ( ph /\ ( n e. ZZ_s /\ N <_s n ) ) -> ( n -s N ) e. NN0_s ) |
| 22 |
21
|
ex |
|- ( ph -> ( ( n e. ZZ_s /\ N <_s n ) -> ( n -s N ) e. NN0_s ) ) |
| 23 |
|
oveq1 |
|- ( z = 0s -> ( z +s N ) = ( 0s +s N ) ) |
| 24 |
23
|
eleq1d |
|- ( z = 0s -> ( ( z +s N ) e. A <-> ( 0s +s N ) e. A ) ) |
| 25 |
24
|
imbi2d |
|- ( z = 0s -> ( ( ph -> ( z +s N ) e. A ) <-> ( ph -> ( 0s +s N ) e. A ) ) ) |
| 26 |
|
oveq1 |
|- ( z = y -> ( z +s N ) = ( y +s N ) ) |
| 27 |
26
|
eleq1d |
|- ( z = y -> ( ( z +s N ) e. A <-> ( y +s N ) e. A ) ) |
| 28 |
27
|
imbi2d |
|- ( z = y -> ( ( ph -> ( z +s N ) e. A ) <-> ( ph -> ( y +s N ) e. A ) ) ) |
| 29 |
|
oveq1 |
|- ( z = ( y +s 1s ) -> ( z +s N ) = ( ( y +s 1s ) +s N ) ) |
| 30 |
29
|
eleq1d |
|- ( z = ( y +s 1s ) -> ( ( z +s N ) e. A <-> ( ( y +s 1s ) +s N ) e. A ) ) |
| 31 |
30
|
imbi2d |
|- ( z = ( y +s 1s ) -> ( ( ph -> ( z +s N ) e. A ) <-> ( ph -> ( ( y +s 1s ) +s N ) e. A ) ) ) |
| 32 |
|
oveq1 |
|- ( z = ( n -s N ) -> ( z +s N ) = ( ( n -s N ) +s N ) ) |
| 33 |
32
|
eleq1d |
|- ( z = ( n -s N ) -> ( ( z +s N ) e. A <-> ( ( n -s N ) +s N ) e. A ) ) |
| 34 |
33
|
imbi2d |
|- ( z = ( n -s N ) -> ( ( ph -> ( z +s N ) e. A ) <-> ( ph -> ( ( n -s N ) +s N ) e. A ) ) ) |
| 35 |
|
addslid |
|- ( N e. No -> ( 0s +s N ) = N ) |
| 36 |
8 35
|
syl |
|- ( ph -> ( 0s +s N ) = N ) |
| 37 |
36 2
|
eqeltrd |
|- ( ph -> ( 0s +s N ) e. A ) |
| 38 |
3
|
ralrimiva |
|- ( ph -> A. x e. A ( x +s 1s ) e. A ) |
| 39 |
|
oveq1 |
|- ( x = ( y +s N ) -> ( x +s 1s ) = ( ( y +s N ) +s 1s ) ) |
| 40 |
39
|
eleq1d |
|- ( x = ( y +s N ) -> ( ( x +s 1s ) e. A <-> ( ( y +s N ) +s 1s ) e. A ) ) |
| 41 |
40
|
rspccv |
|- ( A. x e. A ( x +s 1s ) e. A -> ( ( y +s N ) e. A -> ( ( y +s N ) +s 1s ) e. A ) ) |
| 42 |
38 41
|
syl |
|- ( ph -> ( ( y +s N ) e. A -> ( ( y +s N ) +s 1s ) e. A ) ) |
| 43 |
42
|
adantl |
|- ( ( y e. NN0_s /\ ph ) -> ( ( y +s N ) e. A -> ( ( y +s N ) +s 1s ) e. A ) ) |
| 44 |
|
n0sno |
|- ( y e. NN0_s -> y e. No ) |
| 45 |
44
|
adantr |
|- ( ( y e. NN0_s /\ ph ) -> y e. No ) |
| 46 |
|
1sno |
|- 1s e. No |
| 47 |
46
|
a1i |
|- ( ( y e. NN0_s /\ ph ) -> 1s e. No ) |
| 48 |
8
|
adantl |
|- ( ( y e. NN0_s /\ ph ) -> N e. No ) |
| 49 |
45 47 48
|
adds32d |
|- ( ( y e. NN0_s /\ ph ) -> ( ( y +s 1s ) +s N ) = ( ( y +s N ) +s 1s ) ) |
| 50 |
49
|
eleq1d |
|- ( ( y e. NN0_s /\ ph ) -> ( ( ( y +s 1s ) +s N ) e. A <-> ( ( y +s N ) +s 1s ) e. A ) ) |
| 51 |
43 50
|
sylibrd |
|- ( ( y e. NN0_s /\ ph ) -> ( ( y +s N ) e. A -> ( ( y +s 1s ) +s N ) e. A ) ) |
| 52 |
51
|
ex |
|- ( y e. NN0_s -> ( ph -> ( ( y +s N ) e. A -> ( ( y +s 1s ) +s N ) e. A ) ) ) |
| 53 |
52
|
a2d |
|- ( y e. NN0_s -> ( ( ph -> ( y +s N ) e. A ) -> ( ph -> ( ( y +s 1s ) +s N ) e. A ) ) ) |
| 54 |
25 28 31 34 37 53
|
n0sind |
|- ( ( n -s N ) e. NN0_s -> ( ph -> ( ( n -s N ) +s N ) e. A ) ) |
| 55 |
54
|
com12 |
|- ( ph -> ( ( n -s N ) e. NN0_s -> ( ( n -s N ) +s N ) e. A ) ) |
| 56 |
22 55
|
syld |
|- ( ph -> ( ( n e. ZZ_s /\ N <_s n ) -> ( ( n -s N ) +s N ) e. A ) ) |
| 57 |
56
|
imp |
|- ( ( ph /\ ( n e. ZZ_s /\ N <_s n ) ) -> ( ( n -s N ) +s N ) e. A ) |
| 58 |
10 57
|
eqeltrrd |
|- ( ( ph /\ ( n e. ZZ_s /\ N <_s n ) ) -> n e. A ) |
| 59 |
58
|
ex |
|- ( ph -> ( ( n e. ZZ_s /\ N <_s n ) -> n e. A ) ) |
| 60 |
5 59
|
biimtrid |
|- ( ph -> ( n e. { k e. ZZ_s | N <_s k } -> n e. A ) ) |
| 61 |
60
|
ssrdv |
|- ( ph -> { k e. ZZ_s | N <_s k } C_ A ) |