Step |
Hyp |
Ref |
Expression |
1 |
|
peano5uzs.1 |
|- ( ph -> N e. ZZ_s ) |
2 |
|
peano5uzs.2 |
|- ( ph -> N e. A ) |
3 |
|
peano5uzs.3 |
|- ( ( ph /\ x e. A ) -> ( x +s 1s ) e. A ) |
4 |
|
breq2 |
|- ( k = n -> ( N <_s k <-> N <_s n ) ) |
5 |
4
|
elrab |
|- ( n e. { k e. ZZ_s | N <_s k } <-> ( n e. ZZ_s /\ N <_s n ) ) |
6 |
|
zno |
|- ( n e. ZZ_s -> n e. No ) |
7 |
6
|
adantr |
|- ( ( n e. ZZ_s /\ N <_s n ) -> n e. No ) |
8 |
1
|
znod |
|- ( ph -> N e. No ) |
9 |
|
npcans |
|- ( ( n e. No /\ N e. No ) -> ( ( n -s N ) +s N ) = n ) |
10 |
7 8 9
|
syl2anr |
|- ( ( ph /\ ( n e. ZZ_s /\ N <_s n ) ) -> ( ( n -s N ) +s N ) = n ) |
11 |
|
simprl |
|- ( ( ph /\ ( n e. ZZ_s /\ N <_s n ) ) -> n e. ZZ_s ) |
12 |
1
|
adantr |
|- ( ( ph /\ ( n e. ZZ_s /\ N <_s n ) ) -> N e. ZZ_s ) |
13 |
11 12
|
zsubscld |
|- ( ( ph /\ ( n e. ZZ_s /\ N <_s n ) ) -> ( n -s N ) e. ZZ_s ) |
14 |
6
|
adantl |
|- ( ( ph /\ n e. ZZ_s ) -> n e. No ) |
15 |
8
|
adantr |
|- ( ( ph /\ n e. ZZ_s ) -> N e. No ) |
16 |
14 15
|
subsge0d |
|- ( ( ph /\ n e. ZZ_s ) -> ( 0s <_s ( n -s N ) <-> N <_s n ) ) |
17 |
16
|
biimpar |
|- ( ( ( ph /\ n e. ZZ_s ) /\ N <_s n ) -> 0s <_s ( n -s N ) ) |
18 |
17
|
anasss |
|- ( ( ph /\ ( n e. ZZ_s /\ N <_s n ) ) -> 0s <_s ( n -s N ) ) |
19 |
13 18
|
jca |
|- ( ( ph /\ ( n e. ZZ_s /\ N <_s n ) ) -> ( ( n -s N ) e. ZZ_s /\ 0s <_s ( n -s N ) ) ) |
20 |
|
eln0zs |
|- ( ( n -s N ) e. NN0_s <-> ( ( n -s N ) e. ZZ_s /\ 0s <_s ( n -s N ) ) ) |
21 |
19 20
|
sylibr |
|- ( ( ph /\ ( n e. ZZ_s /\ N <_s n ) ) -> ( n -s N ) e. NN0_s ) |
22 |
21
|
ex |
|- ( ph -> ( ( n e. ZZ_s /\ N <_s n ) -> ( n -s N ) e. NN0_s ) ) |
23 |
|
oveq1 |
|- ( z = 0s -> ( z +s N ) = ( 0s +s N ) ) |
24 |
23
|
eleq1d |
|- ( z = 0s -> ( ( z +s N ) e. A <-> ( 0s +s N ) e. A ) ) |
25 |
24
|
imbi2d |
|- ( z = 0s -> ( ( ph -> ( z +s N ) e. A ) <-> ( ph -> ( 0s +s N ) e. A ) ) ) |
26 |
|
oveq1 |
|- ( z = y -> ( z +s N ) = ( y +s N ) ) |
27 |
26
|
eleq1d |
|- ( z = y -> ( ( z +s N ) e. A <-> ( y +s N ) e. A ) ) |
28 |
27
|
imbi2d |
|- ( z = y -> ( ( ph -> ( z +s N ) e. A ) <-> ( ph -> ( y +s N ) e. A ) ) ) |
29 |
|
oveq1 |
|- ( z = ( y +s 1s ) -> ( z +s N ) = ( ( y +s 1s ) +s N ) ) |
30 |
29
|
eleq1d |
|- ( z = ( y +s 1s ) -> ( ( z +s N ) e. A <-> ( ( y +s 1s ) +s N ) e. A ) ) |
31 |
30
|
imbi2d |
|- ( z = ( y +s 1s ) -> ( ( ph -> ( z +s N ) e. A ) <-> ( ph -> ( ( y +s 1s ) +s N ) e. A ) ) ) |
32 |
|
oveq1 |
|- ( z = ( n -s N ) -> ( z +s N ) = ( ( n -s N ) +s N ) ) |
33 |
32
|
eleq1d |
|- ( z = ( n -s N ) -> ( ( z +s N ) e. A <-> ( ( n -s N ) +s N ) e. A ) ) |
34 |
33
|
imbi2d |
|- ( z = ( n -s N ) -> ( ( ph -> ( z +s N ) e. A ) <-> ( ph -> ( ( n -s N ) +s N ) e. A ) ) ) |
35 |
|
addslid |
|- ( N e. No -> ( 0s +s N ) = N ) |
36 |
8 35
|
syl |
|- ( ph -> ( 0s +s N ) = N ) |
37 |
36 2
|
eqeltrd |
|- ( ph -> ( 0s +s N ) e. A ) |
38 |
3
|
ralrimiva |
|- ( ph -> A. x e. A ( x +s 1s ) e. A ) |
39 |
|
oveq1 |
|- ( x = ( y +s N ) -> ( x +s 1s ) = ( ( y +s N ) +s 1s ) ) |
40 |
39
|
eleq1d |
|- ( x = ( y +s N ) -> ( ( x +s 1s ) e. A <-> ( ( y +s N ) +s 1s ) e. A ) ) |
41 |
40
|
rspccv |
|- ( A. x e. A ( x +s 1s ) e. A -> ( ( y +s N ) e. A -> ( ( y +s N ) +s 1s ) e. A ) ) |
42 |
38 41
|
syl |
|- ( ph -> ( ( y +s N ) e. A -> ( ( y +s N ) +s 1s ) e. A ) ) |
43 |
42
|
adantl |
|- ( ( y e. NN0_s /\ ph ) -> ( ( y +s N ) e. A -> ( ( y +s N ) +s 1s ) e. A ) ) |
44 |
|
n0sno |
|- ( y e. NN0_s -> y e. No ) |
45 |
44
|
adantr |
|- ( ( y e. NN0_s /\ ph ) -> y e. No ) |
46 |
|
1sno |
|- 1s e. No |
47 |
46
|
a1i |
|- ( ( y e. NN0_s /\ ph ) -> 1s e. No ) |
48 |
8
|
adantl |
|- ( ( y e. NN0_s /\ ph ) -> N e. No ) |
49 |
45 47 48
|
adds32d |
|- ( ( y e. NN0_s /\ ph ) -> ( ( y +s 1s ) +s N ) = ( ( y +s N ) +s 1s ) ) |
50 |
49
|
eleq1d |
|- ( ( y e. NN0_s /\ ph ) -> ( ( ( y +s 1s ) +s N ) e. A <-> ( ( y +s N ) +s 1s ) e. A ) ) |
51 |
43 50
|
sylibrd |
|- ( ( y e. NN0_s /\ ph ) -> ( ( y +s N ) e. A -> ( ( y +s 1s ) +s N ) e. A ) ) |
52 |
51
|
ex |
|- ( y e. NN0_s -> ( ph -> ( ( y +s N ) e. A -> ( ( y +s 1s ) +s N ) e. A ) ) ) |
53 |
52
|
a2d |
|- ( y e. NN0_s -> ( ( ph -> ( y +s N ) e. A ) -> ( ph -> ( ( y +s 1s ) +s N ) e. A ) ) ) |
54 |
25 28 31 34 37 53
|
n0sind |
|- ( ( n -s N ) e. NN0_s -> ( ph -> ( ( n -s N ) +s N ) e. A ) ) |
55 |
54
|
com12 |
|- ( ph -> ( ( n -s N ) e. NN0_s -> ( ( n -s N ) +s N ) e. A ) ) |
56 |
22 55
|
syld |
|- ( ph -> ( ( n e. ZZ_s /\ N <_s n ) -> ( ( n -s N ) +s N ) e. A ) ) |
57 |
56
|
imp |
|- ( ( ph /\ ( n e. ZZ_s /\ N <_s n ) ) -> ( ( n -s N ) +s N ) e. A ) |
58 |
10 57
|
eqeltrrd |
|- ( ( ph /\ ( n e. ZZ_s /\ N <_s n ) ) -> n e. A ) |
59 |
58
|
ex |
|- ( ph -> ( ( n e. ZZ_s /\ N <_s n ) -> n e. A ) ) |
60 |
5 59
|
biimtrid |
|- ( ph -> ( n e. { k e. ZZ_s | N <_s k } -> n e. A ) ) |
61 |
60
|
ssrdv |
|- ( ph -> { k e. ZZ_s | N <_s k } C_ A ) |