| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uzsind.1 |  |-  ( j = M -> ( ph <-> ps ) ) | 
						
							| 2 |  | uzsind.2 |  |-  ( j = k -> ( ph <-> ch ) ) | 
						
							| 3 |  | uzsind.3 |  |-  ( j = ( k +s 1s ) -> ( ph <-> th ) ) | 
						
							| 4 |  | uzsind.4 |  |-  ( j = N -> ( ph <-> ta ) ) | 
						
							| 5 |  | uzsind.5 |  |-  ( M e. ZZ_s -> ps ) | 
						
							| 6 |  | uzsind.6 |  |-  ( ( M e. ZZ_s /\ k e. ZZ_s /\ M <_s k ) -> ( ch -> th ) ) | 
						
							| 7 |  | id |  |-  ( M e. ZZ_s -> M e. ZZ_s ) | 
						
							| 8 |  | zno |  |-  ( M e. ZZ_s -> M e. No ) | 
						
							| 9 |  | slerflex |  |-  ( M e. No -> M <_s M ) | 
						
							| 10 | 8 9 | syl |  |-  ( M e. ZZ_s -> M <_s M ) | 
						
							| 11 | 7 10 5 | jca32 |  |-  ( M e. ZZ_s -> ( M e. ZZ_s /\ ( M <_s M /\ ps ) ) ) | 
						
							| 12 |  | breq2 |  |-  ( j = M -> ( M <_s j <-> M <_s M ) ) | 
						
							| 13 | 12 1 | anbi12d |  |-  ( j = M -> ( ( M <_s j /\ ph ) <-> ( M <_s M /\ ps ) ) ) | 
						
							| 14 | 13 | elrab |  |-  ( M e. { j e. ZZ_s | ( M <_s j /\ ph ) } <-> ( M e. ZZ_s /\ ( M <_s M /\ ps ) ) ) | 
						
							| 15 | 11 14 | sylibr |  |-  ( M e. ZZ_s -> M e. { j e. ZZ_s | ( M <_s j /\ ph ) } ) | 
						
							| 16 |  | simpl |  |-  ( ( M e. ZZ_s /\ ( k e. ZZ_s /\ ( M <_s k /\ ch ) ) ) -> M e. ZZ_s ) | 
						
							| 17 |  | simprl |  |-  ( ( M e. ZZ_s /\ ( k e. ZZ_s /\ ( M <_s k /\ ch ) ) ) -> k e. ZZ_s ) | 
						
							| 18 |  | simprrl |  |-  ( ( M e. ZZ_s /\ ( k e. ZZ_s /\ ( M <_s k /\ ch ) ) ) -> M <_s k ) | 
						
							| 19 |  | simprrr |  |-  ( ( M e. ZZ_s /\ ( k e. ZZ_s /\ ( M <_s k /\ ch ) ) ) -> ch ) | 
						
							| 20 |  | id |  |-  ( k e. ZZ_s -> k e. ZZ_s ) | 
						
							| 21 |  | 1zs |  |-  1s e. ZZ_s | 
						
							| 22 | 21 | a1i |  |-  ( k e. ZZ_s -> 1s e. ZZ_s ) | 
						
							| 23 | 20 22 | zaddscld |  |-  ( k e. ZZ_s -> ( k +s 1s ) e. ZZ_s ) | 
						
							| 24 | 23 | 3ad2ant2 |  |-  ( ( M e. ZZ_s /\ k e. ZZ_s /\ M <_s k ) -> ( k +s 1s ) e. ZZ_s ) | 
						
							| 25 | 24 | adantr |  |-  ( ( ( M e. ZZ_s /\ k e. ZZ_s /\ M <_s k ) /\ ch ) -> ( k +s 1s ) e. ZZ_s ) | 
						
							| 26 | 8 | 3ad2ant1 |  |-  ( ( M e. ZZ_s /\ k e. ZZ_s /\ M <_s k ) -> M e. No ) | 
						
							| 27 | 23 | znod |  |-  ( k e. ZZ_s -> ( k +s 1s ) e. No ) | 
						
							| 28 | 27 | 3ad2ant2 |  |-  ( ( M e. ZZ_s /\ k e. ZZ_s /\ M <_s k ) -> ( k +s 1s ) e. No ) | 
						
							| 29 |  | zno |  |-  ( k e. ZZ_s -> k e. No ) | 
						
							| 30 | 29 | 3ad2ant2 |  |-  ( ( M e. ZZ_s /\ k e. ZZ_s /\ M <_s k ) -> k e. No ) | 
						
							| 31 |  | simp3 |  |-  ( ( M e. ZZ_s /\ k e. ZZ_s /\ M <_s k ) -> M <_s k ) | 
						
							| 32 | 29 | sltp1d |  |-  ( k e. ZZ_s -> k  | 
						
							| 33 | 32 | 3ad2ant2 |  |-  ( ( M e. ZZ_s /\ k e. ZZ_s /\ M <_s k ) -> k  | 
						
							| 34 | 26 30 28 31 33 | slelttrd |  |-  ( ( M e. ZZ_s /\ k e. ZZ_s /\ M <_s k ) -> M  | 
						
							| 35 | 26 28 34 | sltled |  |-  ( ( M e. ZZ_s /\ k e. ZZ_s /\ M <_s k ) -> M <_s ( k +s 1s ) ) | 
						
							| 36 | 35 | adantr |  |-  ( ( ( M e. ZZ_s /\ k e. ZZ_s /\ M <_s k ) /\ ch ) -> M <_s ( k +s 1s ) ) | 
						
							| 37 | 6 | imp |  |-  ( ( ( M e. ZZ_s /\ k e. ZZ_s /\ M <_s k ) /\ ch ) -> th ) | 
						
							| 38 | 25 36 37 | jca32 |  |-  ( ( ( M e. ZZ_s /\ k e. ZZ_s /\ M <_s k ) /\ ch ) -> ( ( k +s 1s ) e. ZZ_s /\ ( M <_s ( k +s 1s ) /\ th ) ) ) | 
						
							| 39 | 16 17 18 19 38 | syl31anc |  |-  ( ( M e. ZZ_s /\ ( k e. ZZ_s /\ ( M <_s k /\ ch ) ) ) -> ( ( k +s 1s ) e. ZZ_s /\ ( M <_s ( k +s 1s ) /\ th ) ) ) | 
						
							| 40 |  | breq2 |  |-  ( j = k -> ( M <_s j <-> M <_s k ) ) | 
						
							| 41 | 40 2 | anbi12d |  |-  ( j = k -> ( ( M <_s j /\ ph ) <-> ( M <_s k /\ ch ) ) ) | 
						
							| 42 | 41 | elrab |  |-  ( k e. { j e. ZZ_s | ( M <_s j /\ ph ) } <-> ( k e. ZZ_s /\ ( M <_s k /\ ch ) ) ) | 
						
							| 43 | 42 | anbi2i |  |-  ( ( M e. ZZ_s /\ k e. { j e. ZZ_s | ( M <_s j /\ ph ) } ) <-> ( M e. ZZ_s /\ ( k e. ZZ_s /\ ( M <_s k /\ ch ) ) ) ) | 
						
							| 44 |  | breq2 |  |-  ( j = ( k +s 1s ) -> ( M <_s j <-> M <_s ( k +s 1s ) ) ) | 
						
							| 45 | 44 3 | anbi12d |  |-  ( j = ( k +s 1s ) -> ( ( M <_s j /\ ph ) <-> ( M <_s ( k +s 1s ) /\ th ) ) ) | 
						
							| 46 | 45 | elrab |  |-  ( ( k +s 1s ) e. { j e. ZZ_s | ( M <_s j /\ ph ) } <-> ( ( k +s 1s ) e. ZZ_s /\ ( M <_s ( k +s 1s ) /\ th ) ) ) | 
						
							| 47 | 39 43 46 | 3imtr4i |  |-  ( ( M e. ZZ_s /\ k e. { j e. ZZ_s | ( M <_s j /\ ph ) } ) -> ( k +s 1s ) e. { j e. ZZ_s | ( M <_s j /\ ph ) } ) | 
						
							| 48 | 7 15 47 | peano5uzs |  |-  ( M e. ZZ_s -> { w e. ZZ_s | M <_s w } C_ { j e. ZZ_s | ( M <_s j /\ ph ) } ) | 
						
							| 49 | 48 | sseld |  |-  ( M e. ZZ_s -> ( N e. { w e. ZZ_s | M <_s w } -> N e. { j e. ZZ_s | ( M <_s j /\ ph ) } ) ) | 
						
							| 50 |  | breq2 |  |-  ( w = N -> ( M <_s w <-> M <_s N ) ) | 
						
							| 51 | 50 | elrab |  |-  ( N e. { w e. ZZ_s | M <_s w } <-> ( N e. ZZ_s /\ M <_s N ) ) | 
						
							| 52 |  | breq2 |  |-  ( j = N -> ( M <_s j <-> M <_s N ) ) | 
						
							| 53 | 52 4 | anbi12d |  |-  ( j = N -> ( ( M <_s j /\ ph ) <-> ( M <_s N /\ ta ) ) ) | 
						
							| 54 | 53 | elrab |  |-  ( N e. { j e. ZZ_s | ( M <_s j /\ ph ) } <-> ( N e. ZZ_s /\ ( M <_s N /\ ta ) ) ) | 
						
							| 55 | 49 51 54 | 3imtr3g |  |-  ( M e. ZZ_s -> ( ( N e. ZZ_s /\ M <_s N ) -> ( N e. ZZ_s /\ ( M <_s N /\ ta ) ) ) ) | 
						
							| 56 | 55 | 3impib |  |-  ( ( M e. ZZ_s /\ N e. ZZ_s /\ M <_s N ) -> ( N e. ZZ_s /\ ( M <_s N /\ ta ) ) ) | 
						
							| 57 | 56 | simprrd |  |-  ( ( M e. ZZ_s /\ N e. ZZ_s /\ M <_s N ) -> ta ) |