Step |
Hyp |
Ref |
Expression |
1 |
|
uzsind.1 |
|- ( j = M -> ( ph <-> ps ) ) |
2 |
|
uzsind.2 |
|- ( j = k -> ( ph <-> ch ) ) |
3 |
|
uzsind.3 |
|- ( j = ( k +s 1s ) -> ( ph <-> th ) ) |
4 |
|
uzsind.4 |
|- ( j = N -> ( ph <-> ta ) ) |
5 |
|
uzsind.5 |
|- ( M e. ZZ_s -> ps ) |
6 |
|
uzsind.6 |
|- ( ( M e. ZZ_s /\ k e. ZZ_s /\ M <_s k ) -> ( ch -> th ) ) |
7 |
|
id |
|- ( M e. ZZ_s -> M e. ZZ_s ) |
8 |
|
zno |
|- ( M e. ZZ_s -> M e. No ) |
9 |
|
slerflex |
|- ( M e. No -> M <_s M ) |
10 |
8 9
|
syl |
|- ( M e. ZZ_s -> M <_s M ) |
11 |
7 10 5
|
jca32 |
|- ( M e. ZZ_s -> ( M e. ZZ_s /\ ( M <_s M /\ ps ) ) ) |
12 |
|
breq2 |
|- ( j = M -> ( M <_s j <-> M <_s M ) ) |
13 |
12 1
|
anbi12d |
|- ( j = M -> ( ( M <_s j /\ ph ) <-> ( M <_s M /\ ps ) ) ) |
14 |
13
|
elrab |
|- ( M e. { j e. ZZ_s | ( M <_s j /\ ph ) } <-> ( M e. ZZ_s /\ ( M <_s M /\ ps ) ) ) |
15 |
11 14
|
sylibr |
|- ( M e. ZZ_s -> M e. { j e. ZZ_s | ( M <_s j /\ ph ) } ) |
16 |
|
simpl |
|- ( ( M e. ZZ_s /\ ( k e. ZZ_s /\ ( M <_s k /\ ch ) ) ) -> M e. ZZ_s ) |
17 |
|
simprl |
|- ( ( M e. ZZ_s /\ ( k e. ZZ_s /\ ( M <_s k /\ ch ) ) ) -> k e. ZZ_s ) |
18 |
|
simprrl |
|- ( ( M e. ZZ_s /\ ( k e. ZZ_s /\ ( M <_s k /\ ch ) ) ) -> M <_s k ) |
19 |
|
simprrr |
|- ( ( M e. ZZ_s /\ ( k e. ZZ_s /\ ( M <_s k /\ ch ) ) ) -> ch ) |
20 |
|
id |
|- ( k e. ZZ_s -> k e. ZZ_s ) |
21 |
|
1zs |
|- 1s e. ZZ_s |
22 |
21
|
a1i |
|- ( k e. ZZ_s -> 1s e. ZZ_s ) |
23 |
20 22
|
zaddscld |
|- ( k e. ZZ_s -> ( k +s 1s ) e. ZZ_s ) |
24 |
23
|
3ad2ant2 |
|- ( ( M e. ZZ_s /\ k e. ZZ_s /\ M <_s k ) -> ( k +s 1s ) e. ZZ_s ) |
25 |
24
|
adantr |
|- ( ( ( M e. ZZ_s /\ k e. ZZ_s /\ M <_s k ) /\ ch ) -> ( k +s 1s ) e. ZZ_s ) |
26 |
8
|
3ad2ant1 |
|- ( ( M e. ZZ_s /\ k e. ZZ_s /\ M <_s k ) -> M e. No ) |
27 |
23
|
znod |
|- ( k e. ZZ_s -> ( k +s 1s ) e. No ) |
28 |
27
|
3ad2ant2 |
|- ( ( M e. ZZ_s /\ k e. ZZ_s /\ M <_s k ) -> ( k +s 1s ) e. No ) |
29 |
|
zno |
|- ( k e. ZZ_s -> k e. No ) |
30 |
29
|
3ad2ant2 |
|- ( ( M e. ZZ_s /\ k e. ZZ_s /\ M <_s k ) -> k e. No ) |
31 |
|
simp3 |
|- ( ( M e. ZZ_s /\ k e. ZZ_s /\ M <_s k ) -> M <_s k ) |
32 |
29
|
sltp1d |
|- ( k e. ZZ_s -> k |
33 |
32
|
3ad2ant2 |
|- ( ( M e. ZZ_s /\ k e. ZZ_s /\ M <_s k ) -> k |
34 |
26 30 28 31 33
|
slelttrd |
|- ( ( M e. ZZ_s /\ k e. ZZ_s /\ M <_s k ) -> M |
35 |
26 28 34
|
sltled |
|- ( ( M e. ZZ_s /\ k e. ZZ_s /\ M <_s k ) -> M <_s ( k +s 1s ) ) |
36 |
35
|
adantr |
|- ( ( ( M e. ZZ_s /\ k e. ZZ_s /\ M <_s k ) /\ ch ) -> M <_s ( k +s 1s ) ) |
37 |
6
|
imp |
|- ( ( ( M e. ZZ_s /\ k e. ZZ_s /\ M <_s k ) /\ ch ) -> th ) |
38 |
25 36 37
|
jca32 |
|- ( ( ( M e. ZZ_s /\ k e. ZZ_s /\ M <_s k ) /\ ch ) -> ( ( k +s 1s ) e. ZZ_s /\ ( M <_s ( k +s 1s ) /\ th ) ) ) |
39 |
16 17 18 19 38
|
syl31anc |
|- ( ( M e. ZZ_s /\ ( k e. ZZ_s /\ ( M <_s k /\ ch ) ) ) -> ( ( k +s 1s ) e. ZZ_s /\ ( M <_s ( k +s 1s ) /\ th ) ) ) |
40 |
|
breq2 |
|- ( j = k -> ( M <_s j <-> M <_s k ) ) |
41 |
40 2
|
anbi12d |
|- ( j = k -> ( ( M <_s j /\ ph ) <-> ( M <_s k /\ ch ) ) ) |
42 |
41
|
elrab |
|- ( k e. { j e. ZZ_s | ( M <_s j /\ ph ) } <-> ( k e. ZZ_s /\ ( M <_s k /\ ch ) ) ) |
43 |
42
|
anbi2i |
|- ( ( M e. ZZ_s /\ k e. { j e. ZZ_s | ( M <_s j /\ ph ) } ) <-> ( M e. ZZ_s /\ ( k e. ZZ_s /\ ( M <_s k /\ ch ) ) ) ) |
44 |
|
breq2 |
|- ( j = ( k +s 1s ) -> ( M <_s j <-> M <_s ( k +s 1s ) ) ) |
45 |
44 3
|
anbi12d |
|- ( j = ( k +s 1s ) -> ( ( M <_s j /\ ph ) <-> ( M <_s ( k +s 1s ) /\ th ) ) ) |
46 |
45
|
elrab |
|- ( ( k +s 1s ) e. { j e. ZZ_s | ( M <_s j /\ ph ) } <-> ( ( k +s 1s ) e. ZZ_s /\ ( M <_s ( k +s 1s ) /\ th ) ) ) |
47 |
39 43 46
|
3imtr4i |
|- ( ( M e. ZZ_s /\ k e. { j e. ZZ_s | ( M <_s j /\ ph ) } ) -> ( k +s 1s ) e. { j e. ZZ_s | ( M <_s j /\ ph ) } ) |
48 |
7 15 47
|
peano5uzs |
|- ( M e. ZZ_s -> { w e. ZZ_s | M <_s w } C_ { j e. ZZ_s | ( M <_s j /\ ph ) } ) |
49 |
48
|
sseld |
|- ( M e. ZZ_s -> ( N e. { w e. ZZ_s | M <_s w } -> N e. { j e. ZZ_s | ( M <_s j /\ ph ) } ) ) |
50 |
|
breq2 |
|- ( w = N -> ( M <_s w <-> M <_s N ) ) |
51 |
50
|
elrab |
|- ( N e. { w e. ZZ_s | M <_s w } <-> ( N e. ZZ_s /\ M <_s N ) ) |
52 |
|
breq2 |
|- ( j = N -> ( M <_s j <-> M <_s N ) ) |
53 |
52 4
|
anbi12d |
|- ( j = N -> ( ( M <_s j /\ ph ) <-> ( M <_s N /\ ta ) ) ) |
54 |
53
|
elrab |
|- ( N e. { j e. ZZ_s | ( M <_s j /\ ph ) } <-> ( N e. ZZ_s /\ ( M <_s N /\ ta ) ) ) |
55 |
49 51 54
|
3imtr3g |
|- ( M e. ZZ_s -> ( ( N e. ZZ_s /\ M <_s N ) -> ( N e. ZZ_s /\ ( M <_s N /\ ta ) ) ) ) |
56 |
55
|
3impib |
|- ( ( M e. ZZ_s /\ N e. ZZ_s /\ M <_s N ) -> ( N e. ZZ_s /\ ( M <_s N /\ ta ) ) ) |
57 |
56
|
simprrd |
|- ( ( M e. ZZ_s /\ N e. ZZ_s /\ M <_s N ) -> ta ) |