| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elzn0s |
|- ( A e. ZZ_s <-> ( A e. No /\ ( A e. NN0_s \/ ( -us ` A ) e. NN0_s ) ) ) |
| 2 |
|
n0sbday |
|- ( A e. NN0_s -> ( bday ` A ) e. _om ) |
| 3 |
2
|
adantl |
|- ( ( A e. No /\ A e. NN0_s ) -> ( bday ` A ) e. _om ) |
| 4 |
|
negsbday |
|- ( A e. No -> ( bday ` ( -us ` A ) ) = ( bday ` A ) ) |
| 5 |
4
|
adantr |
|- ( ( A e. No /\ ( -us ` A ) e. NN0_s ) -> ( bday ` ( -us ` A ) ) = ( bday ` A ) ) |
| 6 |
|
n0sbday |
|- ( ( -us ` A ) e. NN0_s -> ( bday ` ( -us ` A ) ) e. _om ) |
| 7 |
6
|
adantl |
|- ( ( A e. No /\ ( -us ` A ) e. NN0_s ) -> ( bday ` ( -us ` A ) ) e. _om ) |
| 8 |
5 7
|
eqeltrrd |
|- ( ( A e. No /\ ( -us ` A ) e. NN0_s ) -> ( bday ` A ) e. _om ) |
| 9 |
3 8
|
jaodan |
|- ( ( A e. No /\ ( A e. NN0_s \/ ( -us ` A ) e. NN0_s ) ) -> ( bday ` A ) e. _om ) |
| 10 |
1 9
|
sylbi |
|- ( A e. ZZ_s -> ( bday ` A ) e. _om ) |