Step |
Hyp |
Ref |
Expression |
1 |
|
elzn0s |
|- ( A e. ZZ_s <-> ( A e. No /\ ( A e. NN0_s \/ ( -us ` A ) e. NN0_s ) ) ) |
2 |
|
n0sbday |
|- ( A e. NN0_s -> ( bday ` A ) e. _om ) |
3 |
2
|
adantl |
|- ( ( A e. No /\ A e. NN0_s ) -> ( bday ` A ) e. _om ) |
4 |
|
negsbday |
|- ( A e. No -> ( bday ` ( -us ` A ) ) = ( bday ` A ) ) |
5 |
4
|
adantr |
|- ( ( A e. No /\ ( -us ` A ) e. NN0_s ) -> ( bday ` ( -us ` A ) ) = ( bday ` A ) ) |
6 |
|
n0sbday |
|- ( ( -us ` A ) e. NN0_s -> ( bday ` ( -us ` A ) ) e. _om ) |
7 |
6
|
adantl |
|- ( ( A e. No /\ ( -us ` A ) e. NN0_s ) -> ( bday ` ( -us ` A ) ) e. _om ) |
8 |
5 7
|
eqeltrrd |
|- ( ( A e. No /\ ( -us ` A ) e. NN0_s ) -> ( bday ` A ) e. _om ) |
9 |
3 8
|
jaodan |
|- ( ( A e. No /\ ( A e. NN0_s \/ ( -us ` A ) e. NN0_s ) ) -> ( bday ` A ) e. _om ) |
10 |
1 9
|
sylbi |
|- ( A e. ZZ_s -> ( bday ` A ) e. _om ) |