| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 |  |-  ( m = 0s -> ( bday ` m ) = ( bday ` 0s ) ) | 
						
							| 2 | 1 | eleq1d |  |-  ( m = 0s -> ( ( bday ` m ) e. _om <-> ( bday ` 0s ) e. _om ) ) | 
						
							| 3 |  | fveq2 |  |-  ( m = n -> ( bday ` m ) = ( bday ` n ) ) | 
						
							| 4 | 3 | eleq1d |  |-  ( m = n -> ( ( bday ` m ) e. _om <-> ( bday ` n ) e. _om ) ) | 
						
							| 5 |  | fveq2 |  |-  ( m = ( n +s 1s ) -> ( bday ` m ) = ( bday ` ( n +s 1s ) ) ) | 
						
							| 6 | 5 | eleq1d |  |-  ( m = ( n +s 1s ) -> ( ( bday ` m ) e. _om <-> ( bday ` ( n +s 1s ) ) e. _om ) ) | 
						
							| 7 |  | fveq2 |  |-  ( m = A -> ( bday ` m ) = ( bday ` A ) ) | 
						
							| 8 | 7 | eleq1d |  |-  ( m = A -> ( ( bday ` m ) e. _om <-> ( bday ` A ) e. _om ) ) | 
						
							| 9 |  | bday0s |  |-  ( bday ` 0s ) = (/) | 
						
							| 10 |  | peano1 |  |-  (/) e. _om | 
						
							| 11 | 9 10 | eqeltri |  |-  ( bday ` 0s ) e. _om | 
						
							| 12 |  | peano2n0s |  |-  ( n e. NN0_s -> ( n +s 1s ) e. NN0_s ) | 
						
							| 13 |  | n0scut |  |-  ( ( n +s 1s ) e. NN0_s -> ( n +s 1s ) = ( { ( ( n +s 1s ) -s 1s ) } |s (/) ) ) | 
						
							| 14 | 12 13 | syl |  |-  ( n e. NN0_s -> ( n +s 1s ) = ( { ( ( n +s 1s ) -s 1s ) } |s (/) ) ) | 
						
							| 15 |  | n0sno |  |-  ( n e. NN0_s -> n e. No ) | 
						
							| 16 |  | 1sno |  |-  1s e. No | 
						
							| 17 |  | pncans |  |-  ( ( n e. No /\ 1s e. No ) -> ( ( n +s 1s ) -s 1s ) = n ) | 
						
							| 18 | 15 16 17 | sylancl |  |-  ( n e. NN0_s -> ( ( n +s 1s ) -s 1s ) = n ) | 
						
							| 19 | 18 | sneqd |  |-  ( n e. NN0_s -> { ( ( n +s 1s ) -s 1s ) } = { n } ) | 
						
							| 20 | 19 | oveq1d |  |-  ( n e. NN0_s -> ( { ( ( n +s 1s ) -s 1s ) } |s (/) ) = ( { n } |s (/) ) ) | 
						
							| 21 | 14 20 | eqtrd |  |-  ( n e. NN0_s -> ( n +s 1s ) = ( { n } |s (/) ) ) | 
						
							| 22 | 21 | fveq2d |  |-  ( n e. NN0_s -> ( bday ` ( n +s 1s ) ) = ( bday ` ( { n } |s (/) ) ) ) | 
						
							| 23 |  | snelpwi |  |-  ( n e. No -> { n } e. ~P No ) | 
						
							| 24 |  | nulssgt |  |-  ( { n } e. ~P No -> { n } < | 
						
							| 25 | 15 23 24 | 3syl |  |-  ( n e. NN0_s -> { n } < | 
						
							| 26 |  | un0 |  |-  ( { n } u. (/) ) = { n } | 
						
							| 27 | 26 | imaeq2i |  |-  ( bday " ( { n } u. (/) ) ) = ( bday " { n } ) | 
						
							| 28 |  | bdayfn |  |-  bday Fn No | 
						
							| 29 |  | fnsnfv |  |-  ( ( bday Fn No /\ n e. No ) -> { ( bday ` n ) } = ( bday " { n } ) ) | 
						
							| 30 | 28 15 29 | sylancr |  |-  ( n e. NN0_s -> { ( bday ` n ) } = ( bday " { n } ) ) | 
						
							| 31 | 27 30 | eqtr4id |  |-  ( n e. NN0_s -> ( bday " ( { n } u. (/) ) ) = { ( bday ` n ) } ) | 
						
							| 32 |  | fvex |  |-  ( bday ` n ) e. _V | 
						
							| 33 | 32 | sucid |  |-  ( bday ` n ) e. suc ( bday ` n ) | 
						
							| 34 |  | snssi |  |-  ( ( bday ` n ) e. suc ( bday ` n ) -> { ( bday ` n ) } C_ suc ( bday ` n ) ) | 
						
							| 35 | 33 34 | ax-mp |  |-  { ( bday ` n ) } C_ suc ( bday ` n ) | 
						
							| 36 | 31 35 | eqsstrdi |  |-  ( n e. NN0_s -> ( bday " ( { n } u. (/) ) ) C_ suc ( bday ` n ) ) | 
						
							| 37 |  | bdayelon |  |-  ( bday ` n ) e. On | 
						
							| 38 | 37 | onsuci |  |-  suc ( bday ` n ) e. On | 
						
							| 39 |  | scutbdaybnd |  |-  ( ( { n } < ( bday ` ( { n } |s (/) ) ) C_ suc ( bday ` n ) ) | 
						
							| 40 | 38 39 | mp3an2 |  |-  ( ( { n } < ( bday ` ( { n } |s (/) ) ) C_ suc ( bday ` n ) ) | 
						
							| 41 | 25 36 40 | syl2anc |  |-  ( n e. NN0_s -> ( bday ` ( { n } |s (/) ) ) C_ suc ( bday ` n ) ) | 
						
							| 42 | 22 41 | eqsstrd |  |-  ( n e. NN0_s -> ( bday ` ( n +s 1s ) ) C_ suc ( bday ` n ) ) | 
						
							| 43 |  | bdayelon |  |-  ( bday ` ( n +s 1s ) ) e. On | 
						
							| 44 |  | onsssuc |  |-  ( ( ( bday ` ( n +s 1s ) ) e. On /\ suc ( bday ` n ) e. On ) -> ( ( bday ` ( n +s 1s ) ) C_ suc ( bday ` n ) <-> ( bday ` ( n +s 1s ) ) e. suc suc ( bday ` n ) ) ) | 
						
							| 45 | 43 38 44 | mp2an |  |-  ( ( bday ` ( n +s 1s ) ) C_ suc ( bday ` n ) <-> ( bday ` ( n +s 1s ) ) e. suc suc ( bday ` n ) ) | 
						
							| 46 | 42 45 | sylib |  |-  ( n e. NN0_s -> ( bday ` ( n +s 1s ) ) e. suc suc ( bday ` n ) ) | 
						
							| 47 |  | peano2 |  |-  ( ( bday ` n ) e. _om -> suc ( bday ` n ) e. _om ) | 
						
							| 48 |  | peano2 |  |-  ( suc ( bday ` n ) e. _om -> suc suc ( bday ` n ) e. _om ) | 
						
							| 49 | 47 48 | syl |  |-  ( ( bday ` n ) e. _om -> suc suc ( bday ` n ) e. _om ) | 
						
							| 50 |  | elnn |  |-  ( ( ( bday ` ( n +s 1s ) ) e. suc suc ( bday ` n ) /\ suc suc ( bday ` n ) e. _om ) -> ( bday ` ( n +s 1s ) ) e. _om ) | 
						
							| 51 | 46 49 50 | syl2an |  |-  ( ( n e. NN0_s /\ ( bday ` n ) e. _om ) -> ( bday ` ( n +s 1s ) ) e. _om ) | 
						
							| 52 | 51 | ex |  |-  ( n e. NN0_s -> ( ( bday ` n ) e. _om -> ( bday ` ( n +s 1s ) ) e. _om ) ) | 
						
							| 53 | 2 4 6 8 11 52 | n0sind |  |-  ( A e. NN0_s -> ( bday ` A ) e. _om ) |