| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
|- ( m = 0s -> ( bday ` m ) = ( bday ` 0s ) ) |
| 2 |
1
|
eleq1d |
|- ( m = 0s -> ( ( bday ` m ) e. _om <-> ( bday ` 0s ) e. _om ) ) |
| 3 |
|
fveq2 |
|- ( m = n -> ( bday ` m ) = ( bday ` n ) ) |
| 4 |
3
|
eleq1d |
|- ( m = n -> ( ( bday ` m ) e. _om <-> ( bday ` n ) e. _om ) ) |
| 5 |
|
fveq2 |
|- ( m = ( n +s 1s ) -> ( bday ` m ) = ( bday ` ( n +s 1s ) ) ) |
| 6 |
5
|
eleq1d |
|- ( m = ( n +s 1s ) -> ( ( bday ` m ) e. _om <-> ( bday ` ( n +s 1s ) ) e. _om ) ) |
| 7 |
|
fveq2 |
|- ( m = A -> ( bday ` m ) = ( bday ` A ) ) |
| 8 |
7
|
eleq1d |
|- ( m = A -> ( ( bday ` m ) e. _om <-> ( bday ` A ) e. _om ) ) |
| 9 |
|
bday0s |
|- ( bday ` 0s ) = (/) |
| 10 |
|
peano1 |
|- (/) e. _om |
| 11 |
9 10
|
eqeltri |
|- ( bday ` 0s ) e. _om |
| 12 |
|
n0scut2 |
|- ( n e. NN0_s -> ( n +s 1s ) = ( { n } |s (/) ) ) |
| 13 |
12
|
fveq2d |
|- ( n e. NN0_s -> ( bday ` ( n +s 1s ) ) = ( bday ` ( { n } |s (/) ) ) ) |
| 14 |
|
n0sno |
|- ( n e. NN0_s -> n e. No ) |
| 15 |
|
snelpwi |
|- ( n e. No -> { n } e. ~P No ) |
| 16 |
|
nulssgt |
|- ( { n } e. ~P No -> { n } < |
| 17 |
14 15 16
|
3syl |
|- ( n e. NN0_s -> { n } < |
| 18 |
|
un0 |
|- ( { n } u. (/) ) = { n } |
| 19 |
18
|
imaeq2i |
|- ( bday " ( { n } u. (/) ) ) = ( bday " { n } ) |
| 20 |
|
bdayfn |
|- bday Fn No |
| 21 |
|
fnsnfv |
|- ( ( bday Fn No /\ n e. No ) -> { ( bday ` n ) } = ( bday " { n } ) ) |
| 22 |
20 14 21
|
sylancr |
|- ( n e. NN0_s -> { ( bday ` n ) } = ( bday " { n } ) ) |
| 23 |
19 22
|
eqtr4id |
|- ( n e. NN0_s -> ( bday " ( { n } u. (/) ) ) = { ( bday ` n ) } ) |
| 24 |
|
fvex |
|- ( bday ` n ) e. _V |
| 25 |
24
|
sucid |
|- ( bday ` n ) e. suc ( bday ` n ) |
| 26 |
|
snssi |
|- ( ( bday ` n ) e. suc ( bday ` n ) -> { ( bday ` n ) } C_ suc ( bday ` n ) ) |
| 27 |
25 26
|
ax-mp |
|- { ( bday ` n ) } C_ suc ( bday ` n ) |
| 28 |
23 27
|
eqsstrdi |
|- ( n e. NN0_s -> ( bday " ( { n } u. (/) ) ) C_ suc ( bday ` n ) ) |
| 29 |
|
bdayelon |
|- ( bday ` n ) e. On |
| 30 |
29
|
onsuci |
|- suc ( bday ` n ) e. On |
| 31 |
|
scutbdaybnd |
|- ( ( { n } < ( bday ` ( { n } |s (/) ) ) C_ suc ( bday ` n ) ) |
| 32 |
30 31
|
mp3an2 |
|- ( ( { n } < ( bday ` ( { n } |s (/) ) ) C_ suc ( bday ` n ) ) |
| 33 |
17 28 32
|
syl2anc |
|- ( n e. NN0_s -> ( bday ` ( { n } |s (/) ) ) C_ suc ( bday ` n ) ) |
| 34 |
13 33
|
eqsstrd |
|- ( n e. NN0_s -> ( bday ` ( n +s 1s ) ) C_ suc ( bday ` n ) ) |
| 35 |
|
bdayelon |
|- ( bday ` ( n +s 1s ) ) e. On |
| 36 |
|
onsssuc |
|- ( ( ( bday ` ( n +s 1s ) ) e. On /\ suc ( bday ` n ) e. On ) -> ( ( bday ` ( n +s 1s ) ) C_ suc ( bday ` n ) <-> ( bday ` ( n +s 1s ) ) e. suc suc ( bday ` n ) ) ) |
| 37 |
35 30 36
|
mp2an |
|- ( ( bday ` ( n +s 1s ) ) C_ suc ( bday ` n ) <-> ( bday ` ( n +s 1s ) ) e. suc suc ( bday ` n ) ) |
| 38 |
34 37
|
sylib |
|- ( n e. NN0_s -> ( bday ` ( n +s 1s ) ) e. suc suc ( bday ` n ) ) |
| 39 |
|
peano2 |
|- ( ( bday ` n ) e. _om -> suc ( bday ` n ) e. _om ) |
| 40 |
|
peano2 |
|- ( suc ( bday ` n ) e. _om -> suc suc ( bday ` n ) e. _om ) |
| 41 |
39 40
|
syl |
|- ( ( bday ` n ) e. _om -> suc suc ( bday ` n ) e. _om ) |
| 42 |
|
elnn |
|- ( ( ( bday ` ( n +s 1s ) ) e. suc suc ( bday ` n ) /\ suc suc ( bday ` n ) e. _om ) -> ( bday ` ( n +s 1s ) ) e. _om ) |
| 43 |
38 41 42
|
syl2an |
|- ( ( n e. NN0_s /\ ( bday ` n ) e. _om ) -> ( bday ` ( n +s 1s ) ) e. _om ) |
| 44 |
43
|
ex |
|- ( n e. NN0_s -> ( ( bday ` n ) e. _om -> ( bday ` ( n +s 1s ) ) e. _om ) ) |
| 45 |
2 4 6 8 11 44
|
n0sind |
|- ( A e. NN0_s -> ( bday ` A ) e. _om ) |