Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|- ( m = 0s -> ( bday ` m ) = ( bday ` 0s ) ) |
2 |
1
|
eleq1d |
|- ( m = 0s -> ( ( bday ` m ) e. _om <-> ( bday ` 0s ) e. _om ) ) |
3 |
|
fveq2 |
|- ( m = n -> ( bday ` m ) = ( bday ` n ) ) |
4 |
3
|
eleq1d |
|- ( m = n -> ( ( bday ` m ) e. _om <-> ( bday ` n ) e. _om ) ) |
5 |
|
fveq2 |
|- ( m = ( n +s 1s ) -> ( bday ` m ) = ( bday ` ( n +s 1s ) ) ) |
6 |
5
|
eleq1d |
|- ( m = ( n +s 1s ) -> ( ( bday ` m ) e. _om <-> ( bday ` ( n +s 1s ) ) e. _om ) ) |
7 |
|
fveq2 |
|- ( m = A -> ( bday ` m ) = ( bday ` A ) ) |
8 |
7
|
eleq1d |
|- ( m = A -> ( ( bday ` m ) e. _om <-> ( bday ` A ) e. _om ) ) |
9 |
|
bday0s |
|- ( bday ` 0s ) = (/) |
10 |
|
peano1 |
|- (/) e. _om |
11 |
9 10
|
eqeltri |
|- ( bday ` 0s ) e. _om |
12 |
|
peano2n0s |
|- ( n e. NN0_s -> ( n +s 1s ) e. NN0_s ) |
13 |
|
n0scut |
|- ( ( n +s 1s ) e. NN0_s -> ( n +s 1s ) = ( { ( ( n +s 1s ) -s 1s ) } |s (/) ) ) |
14 |
12 13
|
syl |
|- ( n e. NN0_s -> ( n +s 1s ) = ( { ( ( n +s 1s ) -s 1s ) } |s (/) ) ) |
15 |
|
n0sno |
|- ( n e. NN0_s -> n e. No ) |
16 |
|
1sno |
|- 1s e. No |
17 |
|
pncans |
|- ( ( n e. No /\ 1s e. No ) -> ( ( n +s 1s ) -s 1s ) = n ) |
18 |
15 16 17
|
sylancl |
|- ( n e. NN0_s -> ( ( n +s 1s ) -s 1s ) = n ) |
19 |
18
|
sneqd |
|- ( n e. NN0_s -> { ( ( n +s 1s ) -s 1s ) } = { n } ) |
20 |
19
|
oveq1d |
|- ( n e. NN0_s -> ( { ( ( n +s 1s ) -s 1s ) } |s (/) ) = ( { n } |s (/) ) ) |
21 |
14 20
|
eqtrd |
|- ( n e. NN0_s -> ( n +s 1s ) = ( { n } |s (/) ) ) |
22 |
21
|
fveq2d |
|- ( n e. NN0_s -> ( bday ` ( n +s 1s ) ) = ( bday ` ( { n } |s (/) ) ) ) |
23 |
|
snelpwi |
|- ( n e. No -> { n } e. ~P No ) |
24 |
|
nulssgt |
|- ( { n } e. ~P No -> { n } < |
25 |
15 23 24
|
3syl |
|- ( n e. NN0_s -> { n } < |
26 |
|
un0 |
|- ( { n } u. (/) ) = { n } |
27 |
26
|
imaeq2i |
|- ( bday " ( { n } u. (/) ) ) = ( bday " { n } ) |
28 |
|
bdayfn |
|- bday Fn No |
29 |
|
fnsnfv |
|- ( ( bday Fn No /\ n e. No ) -> { ( bday ` n ) } = ( bday " { n } ) ) |
30 |
28 15 29
|
sylancr |
|- ( n e. NN0_s -> { ( bday ` n ) } = ( bday " { n } ) ) |
31 |
27 30
|
eqtr4id |
|- ( n e. NN0_s -> ( bday " ( { n } u. (/) ) ) = { ( bday ` n ) } ) |
32 |
|
fvex |
|- ( bday ` n ) e. _V |
33 |
32
|
sucid |
|- ( bday ` n ) e. suc ( bday ` n ) |
34 |
|
snssi |
|- ( ( bday ` n ) e. suc ( bday ` n ) -> { ( bday ` n ) } C_ suc ( bday ` n ) ) |
35 |
33 34
|
ax-mp |
|- { ( bday ` n ) } C_ suc ( bday ` n ) |
36 |
31 35
|
eqsstrdi |
|- ( n e. NN0_s -> ( bday " ( { n } u. (/) ) ) C_ suc ( bday ` n ) ) |
37 |
|
bdayelon |
|- ( bday ` n ) e. On |
38 |
37
|
onsuci |
|- suc ( bday ` n ) e. On |
39 |
|
scutbdaybnd |
|- ( ( { n } < ( bday ` ( { n } |s (/) ) ) C_ suc ( bday ` n ) ) |
40 |
38 39
|
mp3an2 |
|- ( ( { n } < ( bday ` ( { n } |s (/) ) ) C_ suc ( bday ` n ) ) |
41 |
25 36 40
|
syl2anc |
|- ( n e. NN0_s -> ( bday ` ( { n } |s (/) ) ) C_ suc ( bday ` n ) ) |
42 |
22 41
|
eqsstrd |
|- ( n e. NN0_s -> ( bday ` ( n +s 1s ) ) C_ suc ( bday ` n ) ) |
43 |
|
bdayelon |
|- ( bday ` ( n +s 1s ) ) e. On |
44 |
|
onsssuc |
|- ( ( ( bday ` ( n +s 1s ) ) e. On /\ suc ( bday ` n ) e. On ) -> ( ( bday ` ( n +s 1s ) ) C_ suc ( bday ` n ) <-> ( bday ` ( n +s 1s ) ) e. suc suc ( bday ` n ) ) ) |
45 |
43 38 44
|
mp2an |
|- ( ( bday ` ( n +s 1s ) ) C_ suc ( bday ` n ) <-> ( bday ` ( n +s 1s ) ) e. suc suc ( bday ` n ) ) |
46 |
42 45
|
sylib |
|- ( n e. NN0_s -> ( bday ` ( n +s 1s ) ) e. suc suc ( bday ` n ) ) |
47 |
|
peano2 |
|- ( ( bday ` n ) e. _om -> suc ( bday ` n ) e. _om ) |
48 |
|
peano2 |
|- ( suc ( bday ` n ) e. _om -> suc suc ( bday ` n ) e. _om ) |
49 |
47 48
|
syl |
|- ( ( bday ` n ) e. _om -> suc suc ( bday ` n ) e. _om ) |
50 |
|
elnn |
|- ( ( ( bday ` ( n +s 1s ) ) e. suc suc ( bday ` n ) /\ suc suc ( bday ` n ) e. _om ) -> ( bday ` ( n +s 1s ) ) e. _om ) |
51 |
46 49 50
|
syl2an |
|- ( ( n e. NN0_s /\ ( bday ` n ) e. _om ) -> ( bday ` ( n +s 1s ) ) e. _om ) |
52 |
51
|
ex |
|- ( n e. NN0_s -> ( ( bday ` n ) e. _om -> ( bday ` ( n +s 1s ) ) e. _om ) ) |
53 |
2 4 6 8 11 52
|
n0sind |
|- ( A e. NN0_s -> ( bday ` A ) e. _om ) |