Metamath Proof Explorer


Theorem n0sbday

Description: A non-negative surreal integer has a finite birthday. (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Assertion n0sbday A 0s bday A ω

Proof

Step Hyp Ref Expression
1 fveq2 m = 0 s bday m = bday 0 s
2 1 eleq1d m = 0 s bday m ω bday 0 s ω
3 fveq2 m = n bday m = bday n
4 3 eleq1d m = n bday m ω bday n ω
5 fveq2 m = n + s 1 s bday m = bday n + s 1 s
6 5 eleq1d m = n + s 1 s bday m ω bday n + s 1 s ω
7 fveq2 m = A bday m = bday A
8 7 eleq1d m = A bday m ω bday A ω
9 bday0s bday 0 s =
10 peano1 ω
11 9 10 eqeltri bday 0 s ω
12 n0scut2 n 0s n + s 1 s = n | s
13 12 fveq2d n 0s bday n + s 1 s = bday n | s
14 n0sno n 0s n No
15 snelpwi n No n 𝒫 No
16 nulssgt n 𝒫 No n s
17 14 15 16 3syl n 0s n s
18 un0 n = n
19 18 imaeq2i bday n = bday n
20 bdayfn bday Fn No
21 fnsnfv bday Fn No n No bday n = bday n
22 20 14 21 sylancr n 0s bday n = bday n
23 19 22 eqtr4id n 0s bday n = bday n
24 fvex bday n V
25 24 sucid bday n suc bday n
26 snssi bday n suc bday n bday n suc bday n
27 25 26 ax-mp bday n suc bday n
28 23 27 eqsstrdi n 0s bday n suc bday n
29 bdayelon bday n On
30 29 onsuci suc bday n On
31 scutbdaybnd n s suc bday n On bday n suc bday n bday n | s suc bday n
32 30 31 mp3an2 n s bday n suc bday n bday n | s suc bday n
33 17 28 32 syl2anc n 0s bday n | s suc bday n
34 13 33 eqsstrd n 0s bday n + s 1 s suc bday n
35 bdayelon bday n + s 1 s On
36 onsssuc bday n + s 1 s On suc bday n On bday n + s 1 s suc bday n bday n + s 1 s suc suc bday n
37 35 30 36 mp2an bday n + s 1 s suc bday n bday n + s 1 s suc suc bday n
38 34 37 sylib n 0s bday n + s 1 s suc suc bday n
39 peano2 bday n ω suc bday n ω
40 peano2 suc bday n ω suc suc bday n ω
41 39 40 syl bday n ω suc suc bday n ω
42 elnn bday n + s 1 s suc suc bday n suc suc bday n ω bday n + s 1 s ω
43 38 41 42 syl2an n 0s bday n ω bday n + s 1 s ω
44 43 ex n 0s bday n ω bday n + s 1 s ω
45 2 4 6 8 11 44 n0sind A 0s bday A ω