Metamath Proof Explorer


Theorem n0sbday

Description: A non-negative surreal integer has a finite birthday. (Contributed by Scott Fenton, 18-Apr-2025)

Ref Expression
Assertion n0sbday A 0s bday A ω

Proof

Step Hyp Ref Expression
1 fveq2 m = 0 s bday m = bday 0 s
2 1 eleq1d m = 0 s bday m ω bday 0 s ω
3 fveq2 m = n bday m = bday n
4 3 eleq1d m = n bday m ω bday n ω
5 fveq2 m = n + s 1 s bday m = bday n + s 1 s
6 5 eleq1d m = n + s 1 s bday m ω bday n + s 1 s ω
7 fveq2 m = A bday m = bday A
8 7 eleq1d m = A bday m ω bday A ω
9 bday0s bday 0 s =
10 peano1 ω
11 9 10 eqeltri bday 0 s ω
12 peano2n0s n 0s n + s 1 s 0s
13 n0scut n + s 1 s 0s n + s 1 s = n + s 1 s - s 1 s | s
14 12 13 syl n 0s n + s 1 s = n + s 1 s - s 1 s | s
15 n0sno n 0s n No
16 1sno 1 s No
17 pncans n No 1 s No n + s 1 s - s 1 s = n
18 15 16 17 sylancl n 0s n + s 1 s - s 1 s = n
19 18 sneqd n 0s n + s 1 s - s 1 s = n
20 19 oveq1d n 0s n + s 1 s - s 1 s | s = n | s
21 14 20 eqtrd n 0s n + s 1 s = n | s
22 21 fveq2d n 0s bday n + s 1 s = bday n | s
23 snelpwi n No n 𝒫 No
24 nulssgt n 𝒫 No n s
25 15 23 24 3syl n 0s n s
26 un0 n = n
27 26 imaeq2i bday n = bday n
28 bdayfn bday Fn No
29 fnsnfv bday Fn No n No bday n = bday n
30 28 15 29 sylancr n 0s bday n = bday n
31 27 30 eqtr4id n 0s bday n = bday n
32 fvex bday n V
33 32 sucid bday n suc bday n
34 snssi bday n suc bday n bday n suc bday n
35 33 34 ax-mp bday n suc bday n
36 31 35 eqsstrdi n 0s bday n suc bday n
37 bdayelon bday n On
38 37 onsuci suc bday n On
39 scutbdaybnd n s suc bday n On bday n suc bday n bday n | s suc bday n
40 38 39 mp3an2 n s bday n suc bday n bday n | s suc bday n
41 25 36 40 syl2anc n 0s bday n | s suc bday n
42 22 41 eqsstrd n 0s bday n + s 1 s suc bday n
43 bdayelon bday n + s 1 s On
44 onsssuc bday n + s 1 s On suc bday n On bday n + s 1 s suc bday n bday n + s 1 s suc suc bday n
45 43 38 44 mp2an bday n + s 1 s suc bday n bday n + s 1 s suc suc bday n
46 42 45 sylib n 0s bday n + s 1 s suc suc bday n
47 peano2 bday n ω suc bday n ω
48 peano2 suc bday n ω suc suc bday n ω
49 47 48 syl bday n ω suc suc bday n ω
50 elnn bday n + s 1 s suc suc bday n suc suc bday n ω bday n + s 1 s ω
51 46 49 50 syl2an n 0s bday n ω bday n + s 1 s ω
52 51 ex n 0s bday n ω bday n + s 1 s ω
53 2 4 6 8 11 52 n0sind A 0s bday A ω