Metamath Proof Explorer


Theorem zsbday

Description: A surreal integer has a finite birthday. (Contributed by Scott Fenton, 26-May-2025)

Ref Expression
Assertion zsbday ( 𝐴 ∈ ℤs → ( bday 𝐴 ) ∈ ω )

Proof

Step Hyp Ref Expression
1 elzn0s ( 𝐴 ∈ ℤs ↔ ( 𝐴 No ∧ ( 𝐴 ∈ ℕ0s ∨ ( -us𝐴 ) ∈ ℕ0s ) ) )
2 n0sbday ( 𝐴 ∈ ℕ0s → ( bday 𝐴 ) ∈ ω )
3 2 adantl ( ( 𝐴 No 𝐴 ∈ ℕ0s ) → ( bday 𝐴 ) ∈ ω )
4 negsbday ( 𝐴 No → ( bday ‘ ( -us𝐴 ) ) = ( bday 𝐴 ) )
5 4 adantr ( ( 𝐴 No ∧ ( -us𝐴 ) ∈ ℕ0s ) → ( bday ‘ ( -us𝐴 ) ) = ( bday 𝐴 ) )
6 n0sbday ( ( -us𝐴 ) ∈ ℕ0s → ( bday ‘ ( -us𝐴 ) ) ∈ ω )
7 6 adantl ( ( 𝐴 No ∧ ( -us𝐴 ) ∈ ℕ0s ) → ( bday ‘ ( -us𝐴 ) ) ∈ ω )
8 5 7 eqeltrrd ( ( 𝐴 No ∧ ( -us𝐴 ) ∈ ℕ0s ) → ( bday 𝐴 ) ∈ ω )
9 3 8 jaodan ( ( 𝐴 No ∧ ( 𝐴 ∈ ℕ0s ∨ ( -us𝐴 ) ∈ ℕ0s ) ) → ( bday 𝐴 ) ∈ ω )
10 1 9 sylbi ( 𝐴 ∈ ℤs → ( bday 𝐴 ) ∈ ω )