| Step |
Hyp |
Ref |
Expression |
| 1 |
|
negsbdaylem |
⊢ ( 𝐴 ∈ No → ( bday ‘ ( -us ‘ 𝐴 ) ) ⊆ ( bday ‘ 𝐴 ) ) |
| 2 |
|
negnegs |
⊢ ( 𝐴 ∈ No → ( -us ‘ ( -us ‘ 𝐴 ) ) = 𝐴 ) |
| 3 |
2
|
fveq2d |
⊢ ( 𝐴 ∈ No → ( bday ‘ ( -us ‘ ( -us ‘ 𝐴 ) ) ) = ( bday ‘ 𝐴 ) ) |
| 4 |
|
negscl |
⊢ ( 𝐴 ∈ No → ( -us ‘ 𝐴 ) ∈ No ) |
| 5 |
|
negsbdaylem |
⊢ ( ( -us ‘ 𝐴 ) ∈ No → ( bday ‘ ( -us ‘ ( -us ‘ 𝐴 ) ) ) ⊆ ( bday ‘ ( -us ‘ 𝐴 ) ) ) |
| 6 |
4 5
|
syl |
⊢ ( 𝐴 ∈ No → ( bday ‘ ( -us ‘ ( -us ‘ 𝐴 ) ) ) ⊆ ( bday ‘ ( -us ‘ 𝐴 ) ) ) |
| 7 |
3 6
|
eqsstrrd |
⊢ ( 𝐴 ∈ No → ( bday ‘ 𝐴 ) ⊆ ( bday ‘ ( -us ‘ 𝐴 ) ) ) |
| 8 |
1 7
|
eqssd |
⊢ ( 𝐴 ∈ No → ( bday ‘ ( -us ‘ 𝐴 ) ) = ( bday ‘ 𝐴 ) ) |