| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elzn0s |
⊢ ( 𝐴 ∈ ℤs ↔ ( 𝐴 ∈ No ∧ ( 𝐴 ∈ ℕ0s ∨ ( -us ‘ 𝐴 ) ∈ ℕ0s ) ) ) |
| 2 |
|
n0scut |
⊢ ( 𝐴 ∈ ℕ0s → 𝐴 = ( { ( 𝐴 -s 1s ) } |s ∅ ) ) |
| 3 |
|
n0sno |
⊢ ( 𝐴 ∈ ℕ0s → 𝐴 ∈ No ) |
| 4 |
|
1sno |
⊢ 1s ∈ No |
| 5 |
4
|
a1i |
⊢ ( 𝐴 ∈ ℕ0s → 1s ∈ No ) |
| 6 |
3 5
|
subscld |
⊢ ( 𝐴 ∈ ℕ0s → ( 𝐴 -s 1s ) ∈ No ) |
| 7 |
|
snelpwi |
⊢ ( ( 𝐴 -s 1s ) ∈ No → { ( 𝐴 -s 1s ) } ∈ 𝒫 No ) |
| 8 |
|
nulssgt |
⊢ ( { ( 𝐴 -s 1s ) } ∈ 𝒫 No → { ( 𝐴 -s 1s ) } <<s ∅ ) |
| 9 |
6 7 8
|
3syl |
⊢ ( 𝐴 ∈ ℕ0s → { ( 𝐴 -s 1s ) } <<s ∅ ) |
| 10 |
|
slerflex |
⊢ ( ( 𝐴 -s 1s ) ∈ No → ( 𝐴 -s 1s ) ≤s ( 𝐴 -s 1s ) ) |
| 11 |
6 10
|
syl |
⊢ ( 𝐴 ∈ ℕ0s → ( 𝐴 -s 1s ) ≤s ( 𝐴 -s 1s ) ) |
| 12 |
|
ovex |
⊢ ( 𝐴 -s 1s ) ∈ V |
| 13 |
|
breq1 |
⊢ ( 𝑥 = ( 𝐴 -s 1s ) → ( 𝑥 ≤s 𝑦 ↔ ( 𝐴 -s 1s ) ≤s 𝑦 ) ) |
| 14 |
13
|
rexbidv |
⊢ ( 𝑥 = ( 𝐴 -s 1s ) → ( ∃ 𝑦 ∈ { ( 𝐴 -s 1s ) } 𝑥 ≤s 𝑦 ↔ ∃ 𝑦 ∈ { ( 𝐴 -s 1s ) } ( 𝐴 -s 1s ) ≤s 𝑦 ) ) |
| 15 |
12 14
|
ralsn |
⊢ ( ∀ 𝑥 ∈ { ( 𝐴 -s 1s ) } ∃ 𝑦 ∈ { ( 𝐴 -s 1s ) } 𝑥 ≤s 𝑦 ↔ ∃ 𝑦 ∈ { ( 𝐴 -s 1s ) } ( 𝐴 -s 1s ) ≤s 𝑦 ) |
| 16 |
|
breq2 |
⊢ ( 𝑦 = ( 𝐴 -s 1s ) → ( ( 𝐴 -s 1s ) ≤s 𝑦 ↔ ( 𝐴 -s 1s ) ≤s ( 𝐴 -s 1s ) ) ) |
| 17 |
12 16
|
rexsn |
⊢ ( ∃ 𝑦 ∈ { ( 𝐴 -s 1s ) } ( 𝐴 -s 1s ) ≤s 𝑦 ↔ ( 𝐴 -s 1s ) ≤s ( 𝐴 -s 1s ) ) |
| 18 |
15 17
|
bitri |
⊢ ( ∀ 𝑥 ∈ { ( 𝐴 -s 1s ) } ∃ 𝑦 ∈ { ( 𝐴 -s 1s ) } 𝑥 ≤s 𝑦 ↔ ( 𝐴 -s 1s ) ≤s ( 𝐴 -s 1s ) ) |
| 19 |
11 18
|
sylibr |
⊢ ( 𝐴 ∈ ℕ0s → ∀ 𝑥 ∈ { ( 𝐴 -s 1s ) } ∃ 𝑦 ∈ { ( 𝐴 -s 1s ) } 𝑥 ≤s 𝑦 ) |
| 20 |
|
ral0 |
⊢ ∀ 𝑥 ∈ ∅ ∃ 𝑦 ∈ { ( 𝐴 +s 1s ) } 𝑦 ≤s 𝑥 |
| 21 |
20
|
a1i |
⊢ ( 𝐴 ∈ ℕ0s → ∀ 𝑥 ∈ ∅ ∃ 𝑦 ∈ { ( 𝐴 +s 1s ) } 𝑦 ≤s 𝑥 ) |
| 22 |
3
|
sltm1d |
⊢ ( 𝐴 ∈ ℕ0s → ( 𝐴 -s 1s ) <s 𝐴 ) |
| 23 |
6 3 22
|
ssltsn |
⊢ ( 𝐴 ∈ ℕ0s → { ( 𝐴 -s 1s ) } <<s { 𝐴 } ) |
| 24 |
2
|
sneqd |
⊢ ( 𝐴 ∈ ℕ0s → { 𝐴 } = { ( { ( 𝐴 -s 1s ) } |s ∅ ) } ) |
| 25 |
23 24
|
breqtrd |
⊢ ( 𝐴 ∈ ℕ0s → { ( 𝐴 -s 1s ) } <<s { ( { ( 𝐴 -s 1s ) } |s ∅ ) } ) |
| 26 |
3 5
|
addscld |
⊢ ( 𝐴 ∈ ℕ0s → ( 𝐴 +s 1s ) ∈ No ) |
| 27 |
3
|
sltp1d |
⊢ ( 𝐴 ∈ ℕ0s → 𝐴 <s ( 𝐴 +s 1s ) ) |
| 28 |
3 26 27
|
ssltsn |
⊢ ( 𝐴 ∈ ℕ0s → { 𝐴 } <<s { ( 𝐴 +s 1s ) } ) |
| 29 |
24 28
|
eqbrtrrd |
⊢ ( 𝐴 ∈ ℕ0s → { ( { ( 𝐴 -s 1s ) } |s ∅ ) } <<s { ( 𝐴 +s 1s ) } ) |
| 30 |
9 19 21 25 29
|
cofcut1d |
⊢ ( 𝐴 ∈ ℕ0s → ( { ( 𝐴 -s 1s ) } |s ∅ ) = ( { ( 𝐴 -s 1s ) } |s { ( 𝐴 +s 1s ) } ) ) |
| 31 |
2 30
|
eqtrd |
⊢ ( 𝐴 ∈ ℕ0s → 𝐴 = ( { ( 𝐴 -s 1s ) } |s { ( 𝐴 +s 1s ) } ) ) |
| 32 |
31
|
adantl |
⊢ ( ( 𝐴 ∈ No ∧ 𝐴 ∈ ℕ0s ) → 𝐴 = ( { ( 𝐴 -s 1s ) } |s { ( 𝐴 +s 1s ) } ) ) |
| 33 |
|
negsfn |
⊢ -us Fn No |
| 34 |
|
simpl |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → 𝐴 ∈ No ) |
| 35 |
4
|
a1i |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → 1s ∈ No ) |
| 36 |
34 35
|
addscld |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( 𝐴 +s 1s ) ∈ No ) |
| 37 |
|
fnsnfv |
⊢ ( ( -us Fn No ∧ ( 𝐴 +s 1s ) ∈ No ) → { ( -us ‘ ( 𝐴 +s 1s ) ) } = ( -us “ { ( 𝐴 +s 1s ) } ) ) |
| 38 |
33 36 37
|
sylancr |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → { ( -us ‘ ( 𝐴 +s 1s ) ) } = ( -us “ { ( 𝐴 +s 1s ) } ) ) |
| 39 |
|
negsdi |
⊢ ( ( 𝐴 ∈ No ∧ 1s ∈ No ) → ( -us ‘ ( 𝐴 +s 1s ) ) = ( ( -us ‘ 𝐴 ) +s ( -us ‘ 1s ) ) ) |
| 40 |
34 4 39
|
sylancl |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( -us ‘ ( 𝐴 +s 1s ) ) = ( ( -us ‘ 𝐴 ) +s ( -us ‘ 1s ) ) ) |
| 41 |
|
n0sno |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℕ0s → ( -us ‘ 𝐴 ) ∈ No ) |
| 42 |
41
|
adantl |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( -us ‘ 𝐴 ) ∈ No ) |
| 43 |
42 35
|
subsvald |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( ( -us ‘ 𝐴 ) -s 1s ) = ( ( -us ‘ 𝐴 ) +s ( -us ‘ 1s ) ) ) |
| 44 |
40 43
|
eqtr4d |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( -us ‘ ( 𝐴 +s 1s ) ) = ( ( -us ‘ 𝐴 ) -s 1s ) ) |
| 45 |
44
|
sneqd |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → { ( -us ‘ ( 𝐴 +s 1s ) ) } = { ( ( -us ‘ 𝐴 ) -s 1s ) } ) |
| 46 |
38 45
|
eqtr3d |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( -us “ { ( 𝐴 +s 1s ) } ) = { ( ( -us ‘ 𝐴 ) -s 1s ) } ) |
| 47 |
34 35
|
subscld |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( 𝐴 -s 1s ) ∈ No ) |
| 48 |
|
fnsnfv |
⊢ ( ( -us Fn No ∧ ( 𝐴 -s 1s ) ∈ No ) → { ( -us ‘ ( 𝐴 -s 1s ) ) } = ( -us “ { ( 𝐴 -s 1s ) } ) ) |
| 49 |
33 47 48
|
sylancr |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → { ( -us ‘ ( 𝐴 -s 1s ) ) } = ( -us “ { ( 𝐴 -s 1s ) } ) ) |
| 50 |
35 34
|
subsvald |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( 1s -s 𝐴 ) = ( 1s +s ( -us ‘ 𝐴 ) ) ) |
| 51 |
34 35
|
negsubsdi2d |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( -us ‘ ( 𝐴 -s 1s ) ) = ( 1s -s 𝐴 ) ) |
| 52 |
42 35
|
addscomd |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( ( -us ‘ 𝐴 ) +s 1s ) = ( 1s +s ( -us ‘ 𝐴 ) ) ) |
| 53 |
50 51 52
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( -us ‘ ( 𝐴 -s 1s ) ) = ( ( -us ‘ 𝐴 ) +s 1s ) ) |
| 54 |
53
|
sneqd |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → { ( -us ‘ ( 𝐴 -s 1s ) ) } = { ( ( -us ‘ 𝐴 ) +s 1s ) } ) |
| 55 |
49 54
|
eqtr3d |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( -us “ { ( 𝐴 -s 1s ) } ) = { ( ( -us ‘ 𝐴 ) +s 1s ) } ) |
| 56 |
46 55
|
oveq12d |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( ( -us “ { ( 𝐴 +s 1s ) } ) |s ( -us “ { ( 𝐴 -s 1s ) } ) ) = ( { ( ( -us ‘ 𝐴 ) -s 1s ) } |s { ( ( -us ‘ 𝐴 ) +s 1s ) } ) ) |
| 57 |
34
|
sltm1d |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( 𝐴 -s 1s ) <s 𝐴 ) |
| 58 |
34
|
sltp1d |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → 𝐴 <s ( 𝐴 +s 1s ) ) |
| 59 |
47 34 36 57 58
|
slttrd |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( 𝐴 -s 1s ) <s ( 𝐴 +s 1s ) ) |
| 60 |
47 36 59
|
ssltsn |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → { ( 𝐴 -s 1s ) } <<s { ( 𝐴 +s 1s ) } ) |
| 61 |
|
eqidd |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( { ( 𝐴 -s 1s ) } |s { ( 𝐴 +s 1s ) } ) = ( { ( 𝐴 -s 1s ) } |s { ( 𝐴 +s 1s ) } ) ) |
| 62 |
60 61
|
negsunif |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( -us ‘ ( { ( 𝐴 -s 1s ) } |s { ( 𝐴 +s 1s ) } ) ) = ( ( -us “ { ( 𝐴 +s 1s ) } ) |s ( -us “ { ( 𝐴 -s 1s ) } ) ) ) |
| 63 |
|
n0scut |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℕ0s → ( -us ‘ 𝐴 ) = ( { ( ( -us ‘ 𝐴 ) -s 1s ) } |s ∅ ) ) |
| 64 |
4
|
a1i |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℕ0s → 1s ∈ No ) |
| 65 |
41 64
|
subscld |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℕ0s → ( ( -us ‘ 𝐴 ) -s 1s ) ∈ No ) |
| 66 |
|
snelpwi |
⊢ ( ( ( -us ‘ 𝐴 ) -s 1s ) ∈ No → { ( ( -us ‘ 𝐴 ) -s 1s ) } ∈ 𝒫 No ) |
| 67 |
|
nulssgt |
⊢ ( { ( ( -us ‘ 𝐴 ) -s 1s ) } ∈ 𝒫 No → { ( ( -us ‘ 𝐴 ) -s 1s ) } <<s ∅ ) |
| 68 |
65 66 67
|
3syl |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℕ0s → { ( ( -us ‘ 𝐴 ) -s 1s ) } <<s ∅ ) |
| 69 |
|
slerflex |
⊢ ( ( ( -us ‘ 𝐴 ) -s 1s ) ∈ No → ( ( -us ‘ 𝐴 ) -s 1s ) ≤s ( ( -us ‘ 𝐴 ) -s 1s ) ) |
| 70 |
65 69
|
syl |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℕ0s → ( ( -us ‘ 𝐴 ) -s 1s ) ≤s ( ( -us ‘ 𝐴 ) -s 1s ) ) |
| 71 |
|
ovex |
⊢ ( ( -us ‘ 𝐴 ) -s 1s ) ∈ V |
| 72 |
|
breq1 |
⊢ ( 𝑥 = ( ( -us ‘ 𝐴 ) -s 1s ) → ( 𝑥 ≤s 𝑦 ↔ ( ( -us ‘ 𝐴 ) -s 1s ) ≤s 𝑦 ) ) |
| 73 |
72
|
rexbidv |
⊢ ( 𝑥 = ( ( -us ‘ 𝐴 ) -s 1s ) → ( ∃ 𝑦 ∈ { ( ( -us ‘ 𝐴 ) -s 1s ) } 𝑥 ≤s 𝑦 ↔ ∃ 𝑦 ∈ { ( ( -us ‘ 𝐴 ) -s 1s ) } ( ( -us ‘ 𝐴 ) -s 1s ) ≤s 𝑦 ) ) |
| 74 |
71 73
|
ralsn |
⊢ ( ∀ 𝑥 ∈ { ( ( -us ‘ 𝐴 ) -s 1s ) } ∃ 𝑦 ∈ { ( ( -us ‘ 𝐴 ) -s 1s ) } 𝑥 ≤s 𝑦 ↔ ∃ 𝑦 ∈ { ( ( -us ‘ 𝐴 ) -s 1s ) } ( ( -us ‘ 𝐴 ) -s 1s ) ≤s 𝑦 ) |
| 75 |
|
breq2 |
⊢ ( 𝑦 = ( ( -us ‘ 𝐴 ) -s 1s ) → ( ( ( -us ‘ 𝐴 ) -s 1s ) ≤s 𝑦 ↔ ( ( -us ‘ 𝐴 ) -s 1s ) ≤s ( ( -us ‘ 𝐴 ) -s 1s ) ) ) |
| 76 |
71 75
|
rexsn |
⊢ ( ∃ 𝑦 ∈ { ( ( -us ‘ 𝐴 ) -s 1s ) } ( ( -us ‘ 𝐴 ) -s 1s ) ≤s 𝑦 ↔ ( ( -us ‘ 𝐴 ) -s 1s ) ≤s ( ( -us ‘ 𝐴 ) -s 1s ) ) |
| 77 |
74 76
|
bitri |
⊢ ( ∀ 𝑥 ∈ { ( ( -us ‘ 𝐴 ) -s 1s ) } ∃ 𝑦 ∈ { ( ( -us ‘ 𝐴 ) -s 1s ) } 𝑥 ≤s 𝑦 ↔ ( ( -us ‘ 𝐴 ) -s 1s ) ≤s ( ( -us ‘ 𝐴 ) -s 1s ) ) |
| 78 |
70 77
|
sylibr |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℕ0s → ∀ 𝑥 ∈ { ( ( -us ‘ 𝐴 ) -s 1s ) } ∃ 𝑦 ∈ { ( ( -us ‘ 𝐴 ) -s 1s ) } 𝑥 ≤s 𝑦 ) |
| 79 |
|
ral0 |
⊢ ∀ 𝑥 ∈ ∅ ∃ 𝑦 ∈ { ( ( -us ‘ 𝐴 ) +s 1s ) } 𝑦 ≤s 𝑥 |
| 80 |
79
|
a1i |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℕ0s → ∀ 𝑥 ∈ ∅ ∃ 𝑦 ∈ { ( ( -us ‘ 𝐴 ) +s 1s ) } 𝑦 ≤s 𝑥 ) |
| 81 |
41
|
sltm1d |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℕ0s → ( ( -us ‘ 𝐴 ) -s 1s ) <s ( -us ‘ 𝐴 ) ) |
| 82 |
65 41 81
|
ssltsn |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℕ0s → { ( ( -us ‘ 𝐴 ) -s 1s ) } <<s { ( -us ‘ 𝐴 ) } ) |
| 83 |
63
|
sneqd |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℕ0s → { ( -us ‘ 𝐴 ) } = { ( { ( ( -us ‘ 𝐴 ) -s 1s ) } |s ∅ ) } ) |
| 84 |
82 83
|
breqtrd |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℕ0s → { ( ( -us ‘ 𝐴 ) -s 1s ) } <<s { ( { ( ( -us ‘ 𝐴 ) -s 1s ) } |s ∅ ) } ) |
| 85 |
41 64
|
addscld |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℕ0s → ( ( -us ‘ 𝐴 ) +s 1s ) ∈ No ) |
| 86 |
41
|
sltp1d |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℕ0s → ( -us ‘ 𝐴 ) <s ( ( -us ‘ 𝐴 ) +s 1s ) ) |
| 87 |
41 85 86
|
ssltsn |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℕ0s → { ( -us ‘ 𝐴 ) } <<s { ( ( -us ‘ 𝐴 ) +s 1s ) } ) |
| 88 |
83 87
|
eqbrtrrd |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℕ0s → { ( { ( ( -us ‘ 𝐴 ) -s 1s ) } |s ∅ ) } <<s { ( ( -us ‘ 𝐴 ) +s 1s ) } ) |
| 89 |
68 78 80 84 88
|
cofcut1d |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℕ0s → ( { ( ( -us ‘ 𝐴 ) -s 1s ) } |s ∅ ) = ( { ( ( -us ‘ 𝐴 ) -s 1s ) } |s { ( ( -us ‘ 𝐴 ) +s 1s ) } ) ) |
| 90 |
63 89
|
eqtrd |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℕ0s → ( -us ‘ 𝐴 ) = ( { ( ( -us ‘ 𝐴 ) -s 1s ) } |s { ( ( -us ‘ 𝐴 ) +s 1s ) } ) ) |
| 91 |
90
|
adantl |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( -us ‘ 𝐴 ) = ( { ( ( -us ‘ 𝐴 ) -s 1s ) } |s { ( ( -us ‘ 𝐴 ) +s 1s ) } ) ) |
| 92 |
56 62 91
|
3eqtr4rd |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( -us ‘ 𝐴 ) = ( -us ‘ ( { ( 𝐴 -s 1s ) } |s { ( 𝐴 +s 1s ) } ) ) ) |
| 93 |
60
|
scutcld |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( { ( 𝐴 -s 1s ) } |s { ( 𝐴 +s 1s ) } ) ∈ No ) |
| 94 |
|
negs11 |
⊢ ( ( 𝐴 ∈ No ∧ ( { ( 𝐴 -s 1s ) } |s { ( 𝐴 +s 1s ) } ) ∈ No ) → ( ( -us ‘ 𝐴 ) = ( -us ‘ ( { ( 𝐴 -s 1s ) } |s { ( 𝐴 +s 1s ) } ) ) ↔ 𝐴 = ( { ( 𝐴 -s 1s ) } |s { ( 𝐴 +s 1s ) } ) ) ) |
| 95 |
93 94
|
syldan |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( ( -us ‘ 𝐴 ) = ( -us ‘ ( { ( 𝐴 -s 1s ) } |s { ( 𝐴 +s 1s ) } ) ) ↔ 𝐴 = ( { ( 𝐴 -s 1s ) } |s { ( 𝐴 +s 1s ) } ) ) ) |
| 96 |
92 95
|
mpbid |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → 𝐴 = ( { ( 𝐴 -s 1s ) } |s { ( 𝐴 +s 1s ) } ) ) |
| 97 |
32 96
|
jaodan |
⊢ ( ( 𝐴 ∈ No ∧ ( 𝐴 ∈ ℕ0s ∨ ( -us ‘ 𝐴 ) ∈ ℕ0s ) ) → 𝐴 = ( { ( 𝐴 -s 1s ) } |s { ( 𝐴 +s 1s ) } ) ) |
| 98 |
1 97
|
sylbi |
⊢ ( 𝐴 ∈ ℤs → 𝐴 = ( { ( 𝐴 -s 1s ) } |s { ( 𝐴 +s 1s ) } ) ) |