Step |
Hyp |
Ref |
Expression |
1 |
|
elzn0s |
⊢ ( 𝐴 ∈ ℤs ↔ ( 𝐴 ∈ No ∧ ( 𝐴 ∈ ℕ0s ∨ ( -us ‘ 𝐴 ) ∈ ℕ0s ) ) ) |
2 |
|
n0scut |
⊢ ( 𝐴 ∈ ℕ0s → 𝐴 = ( { ( 𝐴 -s 1s ) } |s ∅ ) ) |
3 |
|
n0sno |
⊢ ( 𝐴 ∈ ℕ0s → 𝐴 ∈ No ) |
4 |
|
1sno |
⊢ 1s ∈ No |
5 |
4
|
a1i |
⊢ ( 𝐴 ∈ ℕ0s → 1s ∈ No ) |
6 |
3 5
|
subscld |
⊢ ( 𝐴 ∈ ℕ0s → ( 𝐴 -s 1s ) ∈ No ) |
7 |
|
snelpwi |
⊢ ( ( 𝐴 -s 1s ) ∈ No → { ( 𝐴 -s 1s ) } ∈ 𝒫 No ) |
8 |
|
nulssgt |
⊢ ( { ( 𝐴 -s 1s ) } ∈ 𝒫 No → { ( 𝐴 -s 1s ) } <<s ∅ ) |
9 |
6 7 8
|
3syl |
⊢ ( 𝐴 ∈ ℕ0s → { ( 𝐴 -s 1s ) } <<s ∅ ) |
10 |
|
slerflex |
⊢ ( ( 𝐴 -s 1s ) ∈ No → ( 𝐴 -s 1s ) ≤s ( 𝐴 -s 1s ) ) |
11 |
6 10
|
syl |
⊢ ( 𝐴 ∈ ℕ0s → ( 𝐴 -s 1s ) ≤s ( 𝐴 -s 1s ) ) |
12 |
|
ovex |
⊢ ( 𝐴 -s 1s ) ∈ V |
13 |
|
breq1 |
⊢ ( 𝑥 = ( 𝐴 -s 1s ) → ( 𝑥 ≤s 𝑦 ↔ ( 𝐴 -s 1s ) ≤s 𝑦 ) ) |
14 |
13
|
rexbidv |
⊢ ( 𝑥 = ( 𝐴 -s 1s ) → ( ∃ 𝑦 ∈ { ( 𝐴 -s 1s ) } 𝑥 ≤s 𝑦 ↔ ∃ 𝑦 ∈ { ( 𝐴 -s 1s ) } ( 𝐴 -s 1s ) ≤s 𝑦 ) ) |
15 |
12 14
|
ralsn |
⊢ ( ∀ 𝑥 ∈ { ( 𝐴 -s 1s ) } ∃ 𝑦 ∈ { ( 𝐴 -s 1s ) } 𝑥 ≤s 𝑦 ↔ ∃ 𝑦 ∈ { ( 𝐴 -s 1s ) } ( 𝐴 -s 1s ) ≤s 𝑦 ) |
16 |
|
breq2 |
⊢ ( 𝑦 = ( 𝐴 -s 1s ) → ( ( 𝐴 -s 1s ) ≤s 𝑦 ↔ ( 𝐴 -s 1s ) ≤s ( 𝐴 -s 1s ) ) ) |
17 |
12 16
|
rexsn |
⊢ ( ∃ 𝑦 ∈ { ( 𝐴 -s 1s ) } ( 𝐴 -s 1s ) ≤s 𝑦 ↔ ( 𝐴 -s 1s ) ≤s ( 𝐴 -s 1s ) ) |
18 |
15 17
|
bitri |
⊢ ( ∀ 𝑥 ∈ { ( 𝐴 -s 1s ) } ∃ 𝑦 ∈ { ( 𝐴 -s 1s ) } 𝑥 ≤s 𝑦 ↔ ( 𝐴 -s 1s ) ≤s ( 𝐴 -s 1s ) ) |
19 |
11 18
|
sylibr |
⊢ ( 𝐴 ∈ ℕ0s → ∀ 𝑥 ∈ { ( 𝐴 -s 1s ) } ∃ 𝑦 ∈ { ( 𝐴 -s 1s ) } 𝑥 ≤s 𝑦 ) |
20 |
|
ral0 |
⊢ ∀ 𝑥 ∈ ∅ ∃ 𝑦 ∈ { ( 𝐴 +s 1s ) } 𝑦 ≤s 𝑥 |
21 |
20
|
a1i |
⊢ ( 𝐴 ∈ ℕ0s → ∀ 𝑥 ∈ ∅ ∃ 𝑦 ∈ { ( 𝐴 +s 1s ) } 𝑦 ≤s 𝑥 ) |
22 |
3
|
sltm1d |
⊢ ( 𝐴 ∈ ℕ0s → ( 𝐴 -s 1s ) <s 𝐴 ) |
23 |
6 3 22
|
ssltsn |
⊢ ( 𝐴 ∈ ℕ0s → { ( 𝐴 -s 1s ) } <<s { 𝐴 } ) |
24 |
2
|
sneqd |
⊢ ( 𝐴 ∈ ℕ0s → { 𝐴 } = { ( { ( 𝐴 -s 1s ) } |s ∅ ) } ) |
25 |
23 24
|
breqtrd |
⊢ ( 𝐴 ∈ ℕ0s → { ( 𝐴 -s 1s ) } <<s { ( { ( 𝐴 -s 1s ) } |s ∅ ) } ) |
26 |
3 5
|
addscld |
⊢ ( 𝐴 ∈ ℕ0s → ( 𝐴 +s 1s ) ∈ No ) |
27 |
3
|
sltp1d |
⊢ ( 𝐴 ∈ ℕ0s → 𝐴 <s ( 𝐴 +s 1s ) ) |
28 |
3 26 27
|
ssltsn |
⊢ ( 𝐴 ∈ ℕ0s → { 𝐴 } <<s { ( 𝐴 +s 1s ) } ) |
29 |
24 28
|
eqbrtrrd |
⊢ ( 𝐴 ∈ ℕ0s → { ( { ( 𝐴 -s 1s ) } |s ∅ ) } <<s { ( 𝐴 +s 1s ) } ) |
30 |
9 19 21 25 29
|
cofcut1d |
⊢ ( 𝐴 ∈ ℕ0s → ( { ( 𝐴 -s 1s ) } |s ∅ ) = ( { ( 𝐴 -s 1s ) } |s { ( 𝐴 +s 1s ) } ) ) |
31 |
2 30
|
eqtrd |
⊢ ( 𝐴 ∈ ℕ0s → 𝐴 = ( { ( 𝐴 -s 1s ) } |s { ( 𝐴 +s 1s ) } ) ) |
32 |
31
|
adantl |
⊢ ( ( 𝐴 ∈ No ∧ 𝐴 ∈ ℕ0s ) → 𝐴 = ( { ( 𝐴 -s 1s ) } |s { ( 𝐴 +s 1s ) } ) ) |
33 |
|
negsfn |
⊢ -us Fn No |
34 |
|
simpl |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → 𝐴 ∈ No ) |
35 |
4
|
a1i |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → 1s ∈ No ) |
36 |
34 35
|
addscld |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( 𝐴 +s 1s ) ∈ No ) |
37 |
|
fnsnfv |
⊢ ( ( -us Fn No ∧ ( 𝐴 +s 1s ) ∈ No ) → { ( -us ‘ ( 𝐴 +s 1s ) ) } = ( -us “ { ( 𝐴 +s 1s ) } ) ) |
38 |
33 36 37
|
sylancr |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → { ( -us ‘ ( 𝐴 +s 1s ) ) } = ( -us “ { ( 𝐴 +s 1s ) } ) ) |
39 |
|
negsdi |
⊢ ( ( 𝐴 ∈ No ∧ 1s ∈ No ) → ( -us ‘ ( 𝐴 +s 1s ) ) = ( ( -us ‘ 𝐴 ) +s ( -us ‘ 1s ) ) ) |
40 |
34 4 39
|
sylancl |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( -us ‘ ( 𝐴 +s 1s ) ) = ( ( -us ‘ 𝐴 ) +s ( -us ‘ 1s ) ) ) |
41 |
|
n0sno |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℕ0s → ( -us ‘ 𝐴 ) ∈ No ) |
42 |
41
|
adantl |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( -us ‘ 𝐴 ) ∈ No ) |
43 |
42 35
|
subsvald |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( ( -us ‘ 𝐴 ) -s 1s ) = ( ( -us ‘ 𝐴 ) +s ( -us ‘ 1s ) ) ) |
44 |
40 43
|
eqtr4d |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( -us ‘ ( 𝐴 +s 1s ) ) = ( ( -us ‘ 𝐴 ) -s 1s ) ) |
45 |
44
|
sneqd |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → { ( -us ‘ ( 𝐴 +s 1s ) ) } = { ( ( -us ‘ 𝐴 ) -s 1s ) } ) |
46 |
38 45
|
eqtr3d |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( -us “ { ( 𝐴 +s 1s ) } ) = { ( ( -us ‘ 𝐴 ) -s 1s ) } ) |
47 |
34 35
|
subscld |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( 𝐴 -s 1s ) ∈ No ) |
48 |
|
fnsnfv |
⊢ ( ( -us Fn No ∧ ( 𝐴 -s 1s ) ∈ No ) → { ( -us ‘ ( 𝐴 -s 1s ) ) } = ( -us “ { ( 𝐴 -s 1s ) } ) ) |
49 |
33 47 48
|
sylancr |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → { ( -us ‘ ( 𝐴 -s 1s ) ) } = ( -us “ { ( 𝐴 -s 1s ) } ) ) |
50 |
35 34
|
subsvald |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( 1s -s 𝐴 ) = ( 1s +s ( -us ‘ 𝐴 ) ) ) |
51 |
34 35
|
negsubsdi2d |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( -us ‘ ( 𝐴 -s 1s ) ) = ( 1s -s 𝐴 ) ) |
52 |
42 35
|
addscomd |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( ( -us ‘ 𝐴 ) +s 1s ) = ( 1s +s ( -us ‘ 𝐴 ) ) ) |
53 |
50 51 52
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( -us ‘ ( 𝐴 -s 1s ) ) = ( ( -us ‘ 𝐴 ) +s 1s ) ) |
54 |
53
|
sneqd |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → { ( -us ‘ ( 𝐴 -s 1s ) ) } = { ( ( -us ‘ 𝐴 ) +s 1s ) } ) |
55 |
49 54
|
eqtr3d |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( -us “ { ( 𝐴 -s 1s ) } ) = { ( ( -us ‘ 𝐴 ) +s 1s ) } ) |
56 |
46 55
|
oveq12d |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( ( -us “ { ( 𝐴 +s 1s ) } ) |s ( -us “ { ( 𝐴 -s 1s ) } ) ) = ( { ( ( -us ‘ 𝐴 ) -s 1s ) } |s { ( ( -us ‘ 𝐴 ) +s 1s ) } ) ) |
57 |
34
|
sltm1d |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( 𝐴 -s 1s ) <s 𝐴 ) |
58 |
34
|
sltp1d |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → 𝐴 <s ( 𝐴 +s 1s ) ) |
59 |
47 34 36 57 58
|
slttrd |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( 𝐴 -s 1s ) <s ( 𝐴 +s 1s ) ) |
60 |
47 36 59
|
ssltsn |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → { ( 𝐴 -s 1s ) } <<s { ( 𝐴 +s 1s ) } ) |
61 |
|
eqidd |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( { ( 𝐴 -s 1s ) } |s { ( 𝐴 +s 1s ) } ) = ( { ( 𝐴 -s 1s ) } |s { ( 𝐴 +s 1s ) } ) ) |
62 |
60 61
|
negsunif |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( -us ‘ ( { ( 𝐴 -s 1s ) } |s { ( 𝐴 +s 1s ) } ) ) = ( ( -us “ { ( 𝐴 +s 1s ) } ) |s ( -us “ { ( 𝐴 -s 1s ) } ) ) ) |
63 |
|
n0scut |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℕ0s → ( -us ‘ 𝐴 ) = ( { ( ( -us ‘ 𝐴 ) -s 1s ) } |s ∅ ) ) |
64 |
4
|
a1i |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℕ0s → 1s ∈ No ) |
65 |
41 64
|
subscld |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℕ0s → ( ( -us ‘ 𝐴 ) -s 1s ) ∈ No ) |
66 |
|
snelpwi |
⊢ ( ( ( -us ‘ 𝐴 ) -s 1s ) ∈ No → { ( ( -us ‘ 𝐴 ) -s 1s ) } ∈ 𝒫 No ) |
67 |
|
nulssgt |
⊢ ( { ( ( -us ‘ 𝐴 ) -s 1s ) } ∈ 𝒫 No → { ( ( -us ‘ 𝐴 ) -s 1s ) } <<s ∅ ) |
68 |
65 66 67
|
3syl |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℕ0s → { ( ( -us ‘ 𝐴 ) -s 1s ) } <<s ∅ ) |
69 |
|
slerflex |
⊢ ( ( ( -us ‘ 𝐴 ) -s 1s ) ∈ No → ( ( -us ‘ 𝐴 ) -s 1s ) ≤s ( ( -us ‘ 𝐴 ) -s 1s ) ) |
70 |
65 69
|
syl |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℕ0s → ( ( -us ‘ 𝐴 ) -s 1s ) ≤s ( ( -us ‘ 𝐴 ) -s 1s ) ) |
71 |
|
ovex |
⊢ ( ( -us ‘ 𝐴 ) -s 1s ) ∈ V |
72 |
|
breq1 |
⊢ ( 𝑥 = ( ( -us ‘ 𝐴 ) -s 1s ) → ( 𝑥 ≤s 𝑦 ↔ ( ( -us ‘ 𝐴 ) -s 1s ) ≤s 𝑦 ) ) |
73 |
72
|
rexbidv |
⊢ ( 𝑥 = ( ( -us ‘ 𝐴 ) -s 1s ) → ( ∃ 𝑦 ∈ { ( ( -us ‘ 𝐴 ) -s 1s ) } 𝑥 ≤s 𝑦 ↔ ∃ 𝑦 ∈ { ( ( -us ‘ 𝐴 ) -s 1s ) } ( ( -us ‘ 𝐴 ) -s 1s ) ≤s 𝑦 ) ) |
74 |
71 73
|
ralsn |
⊢ ( ∀ 𝑥 ∈ { ( ( -us ‘ 𝐴 ) -s 1s ) } ∃ 𝑦 ∈ { ( ( -us ‘ 𝐴 ) -s 1s ) } 𝑥 ≤s 𝑦 ↔ ∃ 𝑦 ∈ { ( ( -us ‘ 𝐴 ) -s 1s ) } ( ( -us ‘ 𝐴 ) -s 1s ) ≤s 𝑦 ) |
75 |
|
breq2 |
⊢ ( 𝑦 = ( ( -us ‘ 𝐴 ) -s 1s ) → ( ( ( -us ‘ 𝐴 ) -s 1s ) ≤s 𝑦 ↔ ( ( -us ‘ 𝐴 ) -s 1s ) ≤s ( ( -us ‘ 𝐴 ) -s 1s ) ) ) |
76 |
71 75
|
rexsn |
⊢ ( ∃ 𝑦 ∈ { ( ( -us ‘ 𝐴 ) -s 1s ) } ( ( -us ‘ 𝐴 ) -s 1s ) ≤s 𝑦 ↔ ( ( -us ‘ 𝐴 ) -s 1s ) ≤s ( ( -us ‘ 𝐴 ) -s 1s ) ) |
77 |
74 76
|
bitri |
⊢ ( ∀ 𝑥 ∈ { ( ( -us ‘ 𝐴 ) -s 1s ) } ∃ 𝑦 ∈ { ( ( -us ‘ 𝐴 ) -s 1s ) } 𝑥 ≤s 𝑦 ↔ ( ( -us ‘ 𝐴 ) -s 1s ) ≤s ( ( -us ‘ 𝐴 ) -s 1s ) ) |
78 |
70 77
|
sylibr |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℕ0s → ∀ 𝑥 ∈ { ( ( -us ‘ 𝐴 ) -s 1s ) } ∃ 𝑦 ∈ { ( ( -us ‘ 𝐴 ) -s 1s ) } 𝑥 ≤s 𝑦 ) |
79 |
|
ral0 |
⊢ ∀ 𝑥 ∈ ∅ ∃ 𝑦 ∈ { ( ( -us ‘ 𝐴 ) +s 1s ) } 𝑦 ≤s 𝑥 |
80 |
79
|
a1i |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℕ0s → ∀ 𝑥 ∈ ∅ ∃ 𝑦 ∈ { ( ( -us ‘ 𝐴 ) +s 1s ) } 𝑦 ≤s 𝑥 ) |
81 |
41
|
sltm1d |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℕ0s → ( ( -us ‘ 𝐴 ) -s 1s ) <s ( -us ‘ 𝐴 ) ) |
82 |
65 41 81
|
ssltsn |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℕ0s → { ( ( -us ‘ 𝐴 ) -s 1s ) } <<s { ( -us ‘ 𝐴 ) } ) |
83 |
63
|
sneqd |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℕ0s → { ( -us ‘ 𝐴 ) } = { ( { ( ( -us ‘ 𝐴 ) -s 1s ) } |s ∅ ) } ) |
84 |
82 83
|
breqtrd |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℕ0s → { ( ( -us ‘ 𝐴 ) -s 1s ) } <<s { ( { ( ( -us ‘ 𝐴 ) -s 1s ) } |s ∅ ) } ) |
85 |
41 64
|
addscld |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℕ0s → ( ( -us ‘ 𝐴 ) +s 1s ) ∈ No ) |
86 |
41
|
sltp1d |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℕ0s → ( -us ‘ 𝐴 ) <s ( ( -us ‘ 𝐴 ) +s 1s ) ) |
87 |
41 85 86
|
ssltsn |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℕ0s → { ( -us ‘ 𝐴 ) } <<s { ( ( -us ‘ 𝐴 ) +s 1s ) } ) |
88 |
83 87
|
eqbrtrrd |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℕ0s → { ( { ( ( -us ‘ 𝐴 ) -s 1s ) } |s ∅ ) } <<s { ( ( -us ‘ 𝐴 ) +s 1s ) } ) |
89 |
68 78 80 84 88
|
cofcut1d |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℕ0s → ( { ( ( -us ‘ 𝐴 ) -s 1s ) } |s ∅ ) = ( { ( ( -us ‘ 𝐴 ) -s 1s ) } |s { ( ( -us ‘ 𝐴 ) +s 1s ) } ) ) |
90 |
63 89
|
eqtrd |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℕ0s → ( -us ‘ 𝐴 ) = ( { ( ( -us ‘ 𝐴 ) -s 1s ) } |s { ( ( -us ‘ 𝐴 ) +s 1s ) } ) ) |
91 |
90
|
adantl |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( -us ‘ 𝐴 ) = ( { ( ( -us ‘ 𝐴 ) -s 1s ) } |s { ( ( -us ‘ 𝐴 ) +s 1s ) } ) ) |
92 |
56 62 91
|
3eqtr4rd |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( -us ‘ 𝐴 ) = ( -us ‘ ( { ( 𝐴 -s 1s ) } |s { ( 𝐴 +s 1s ) } ) ) ) |
93 |
60
|
scutcld |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( { ( 𝐴 -s 1s ) } |s { ( 𝐴 +s 1s ) } ) ∈ No ) |
94 |
|
negs11 |
⊢ ( ( 𝐴 ∈ No ∧ ( { ( 𝐴 -s 1s ) } |s { ( 𝐴 +s 1s ) } ) ∈ No ) → ( ( -us ‘ 𝐴 ) = ( -us ‘ ( { ( 𝐴 -s 1s ) } |s { ( 𝐴 +s 1s ) } ) ) ↔ 𝐴 = ( { ( 𝐴 -s 1s ) } |s { ( 𝐴 +s 1s ) } ) ) ) |
95 |
93 94
|
syldan |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → ( ( -us ‘ 𝐴 ) = ( -us ‘ ( { ( 𝐴 -s 1s ) } |s { ( 𝐴 +s 1s ) } ) ) ↔ 𝐴 = ( { ( 𝐴 -s 1s ) } |s { ( 𝐴 +s 1s ) } ) ) ) |
96 |
92 95
|
mpbid |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ 𝐴 ) ∈ ℕ0s ) → 𝐴 = ( { ( 𝐴 -s 1s ) } |s { ( 𝐴 +s 1s ) } ) ) |
97 |
32 96
|
jaodan |
⊢ ( ( 𝐴 ∈ No ∧ ( 𝐴 ∈ ℕ0s ∨ ( -us ‘ 𝐴 ) ∈ ℕ0s ) ) → 𝐴 = ( { ( 𝐴 -s 1s ) } |s { ( 𝐴 +s 1s ) } ) ) |
98 |
1 97
|
sylbi |
⊢ ( 𝐴 ∈ ℤs → 𝐴 = ( { ( 𝐴 -s 1s ) } |s { ( 𝐴 +s 1s ) } ) ) |