Step |
Hyp |
Ref |
Expression |
1 |
|
elzn0s |
|- ( A e. ZZ_s <-> ( A e. No /\ ( A e. NN0_s \/ ( -us ` A ) e. NN0_s ) ) ) |
2 |
|
n0scut |
|- ( A e. NN0_s -> A = ( { ( A -s 1s ) } |s (/) ) ) |
3 |
|
n0sno |
|- ( A e. NN0_s -> A e. No ) |
4 |
|
1sno |
|- 1s e. No |
5 |
4
|
a1i |
|- ( A e. NN0_s -> 1s e. No ) |
6 |
3 5
|
subscld |
|- ( A e. NN0_s -> ( A -s 1s ) e. No ) |
7 |
|
snelpwi |
|- ( ( A -s 1s ) e. No -> { ( A -s 1s ) } e. ~P No ) |
8 |
|
nulssgt |
|- ( { ( A -s 1s ) } e. ~P No -> { ( A -s 1s ) } < |
9 |
6 7 8
|
3syl |
|- ( A e. NN0_s -> { ( A -s 1s ) } < |
10 |
|
slerflex |
|- ( ( A -s 1s ) e. No -> ( A -s 1s ) <_s ( A -s 1s ) ) |
11 |
6 10
|
syl |
|- ( A e. NN0_s -> ( A -s 1s ) <_s ( A -s 1s ) ) |
12 |
|
ovex |
|- ( A -s 1s ) e. _V |
13 |
|
breq1 |
|- ( x = ( A -s 1s ) -> ( x <_s y <-> ( A -s 1s ) <_s y ) ) |
14 |
13
|
rexbidv |
|- ( x = ( A -s 1s ) -> ( E. y e. { ( A -s 1s ) } x <_s y <-> E. y e. { ( A -s 1s ) } ( A -s 1s ) <_s y ) ) |
15 |
12 14
|
ralsn |
|- ( A. x e. { ( A -s 1s ) } E. y e. { ( A -s 1s ) } x <_s y <-> E. y e. { ( A -s 1s ) } ( A -s 1s ) <_s y ) |
16 |
|
breq2 |
|- ( y = ( A -s 1s ) -> ( ( A -s 1s ) <_s y <-> ( A -s 1s ) <_s ( A -s 1s ) ) ) |
17 |
12 16
|
rexsn |
|- ( E. y e. { ( A -s 1s ) } ( A -s 1s ) <_s y <-> ( A -s 1s ) <_s ( A -s 1s ) ) |
18 |
15 17
|
bitri |
|- ( A. x e. { ( A -s 1s ) } E. y e. { ( A -s 1s ) } x <_s y <-> ( A -s 1s ) <_s ( A -s 1s ) ) |
19 |
11 18
|
sylibr |
|- ( A e. NN0_s -> A. x e. { ( A -s 1s ) } E. y e. { ( A -s 1s ) } x <_s y ) |
20 |
|
ral0 |
|- A. x e. (/) E. y e. { ( A +s 1s ) } y <_s x |
21 |
20
|
a1i |
|- ( A e. NN0_s -> A. x e. (/) E. y e. { ( A +s 1s ) } y <_s x ) |
22 |
3
|
sltm1d |
|- ( A e. NN0_s -> ( A -s 1s ) |
23 |
6 3 22
|
ssltsn |
|- ( A e. NN0_s -> { ( A -s 1s ) } < |
24 |
2
|
sneqd |
|- ( A e. NN0_s -> { A } = { ( { ( A -s 1s ) } |s (/) ) } ) |
25 |
23 24
|
breqtrd |
|- ( A e. NN0_s -> { ( A -s 1s ) } < |
26 |
3 5
|
addscld |
|- ( A e. NN0_s -> ( A +s 1s ) e. No ) |
27 |
3
|
sltp1d |
|- ( A e. NN0_s -> A |
28 |
3 26 27
|
ssltsn |
|- ( A e. NN0_s -> { A } < |
29 |
24 28
|
eqbrtrrd |
|- ( A e. NN0_s -> { ( { ( A -s 1s ) } |s (/) ) } < |
30 |
9 19 21 25 29
|
cofcut1d |
|- ( A e. NN0_s -> ( { ( A -s 1s ) } |s (/) ) = ( { ( A -s 1s ) } |s { ( A +s 1s ) } ) ) |
31 |
2 30
|
eqtrd |
|- ( A e. NN0_s -> A = ( { ( A -s 1s ) } |s { ( A +s 1s ) } ) ) |
32 |
31
|
adantl |
|- ( ( A e. No /\ A e. NN0_s ) -> A = ( { ( A -s 1s ) } |s { ( A +s 1s ) } ) ) |
33 |
|
negsfn |
|- -us Fn No |
34 |
|
simpl |
|- ( ( A e. No /\ ( -us ` A ) e. NN0_s ) -> A e. No ) |
35 |
4
|
a1i |
|- ( ( A e. No /\ ( -us ` A ) e. NN0_s ) -> 1s e. No ) |
36 |
34 35
|
addscld |
|- ( ( A e. No /\ ( -us ` A ) e. NN0_s ) -> ( A +s 1s ) e. No ) |
37 |
|
fnsnfv |
|- ( ( -us Fn No /\ ( A +s 1s ) e. No ) -> { ( -us ` ( A +s 1s ) ) } = ( -us " { ( A +s 1s ) } ) ) |
38 |
33 36 37
|
sylancr |
|- ( ( A e. No /\ ( -us ` A ) e. NN0_s ) -> { ( -us ` ( A +s 1s ) ) } = ( -us " { ( A +s 1s ) } ) ) |
39 |
|
negsdi |
|- ( ( A e. No /\ 1s e. No ) -> ( -us ` ( A +s 1s ) ) = ( ( -us ` A ) +s ( -us ` 1s ) ) ) |
40 |
34 4 39
|
sylancl |
|- ( ( A e. No /\ ( -us ` A ) e. NN0_s ) -> ( -us ` ( A +s 1s ) ) = ( ( -us ` A ) +s ( -us ` 1s ) ) ) |
41 |
|
n0sno |
|- ( ( -us ` A ) e. NN0_s -> ( -us ` A ) e. No ) |
42 |
41
|
adantl |
|- ( ( A e. No /\ ( -us ` A ) e. NN0_s ) -> ( -us ` A ) e. No ) |
43 |
42 35
|
subsvald |
|- ( ( A e. No /\ ( -us ` A ) e. NN0_s ) -> ( ( -us ` A ) -s 1s ) = ( ( -us ` A ) +s ( -us ` 1s ) ) ) |
44 |
40 43
|
eqtr4d |
|- ( ( A e. No /\ ( -us ` A ) e. NN0_s ) -> ( -us ` ( A +s 1s ) ) = ( ( -us ` A ) -s 1s ) ) |
45 |
44
|
sneqd |
|- ( ( A e. No /\ ( -us ` A ) e. NN0_s ) -> { ( -us ` ( A +s 1s ) ) } = { ( ( -us ` A ) -s 1s ) } ) |
46 |
38 45
|
eqtr3d |
|- ( ( A e. No /\ ( -us ` A ) e. NN0_s ) -> ( -us " { ( A +s 1s ) } ) = { ( ( -us ` A ) -s 1s ) } ) |
47 |
34 35
|
subscld |
|- ( ( A e. No /\ ( -us ` A ) e. NN0_s ) -> ( A -s 1s ) e. No ) |
48 |
|
fnsnfv |
|- ( ( -us Fn No /\ ( A -s 1s ) e. No ) -> { ( -us ` ( A -s 1s ) ) } = ( -us " { ( A -s 1s ) } ) ) |
49 |
33 47 48
|
sylancr |
|- ( ( A e. No /\ ( -us ` A ) e. NN0_s ) -> { ( -us ` ( A -s 1s ) ) } = ( -us " { ( A -s 1s ) } ) ) |
50 |
35 34
|
subsvald |
|- ( ( A e. No /\ ( -us ` A ) e. NN0_s ) -> ( 1s -s A ) = ( 1s +s ( -us ` A ) ) ) |
51 |
34 35
|
negsubsdi2d |
|- ( ( A e. No /\ ( -us ` A ) e. NN0_s ) -> ( -us ` ( A -s 1s ) ) = ( 1s -s A ) ) |
52 |
42 35
|
addscomd |
|- ( ( A e. No /\ ( -us ` A ) e. NN0_s ) -> ( ( -us ` A ) +s 1s ) = ( 1s +s ( -us ` A ) ) ) |
53 |
50 51 52
|
3eqtr4d |
|- ( ( A e. No /\ ( -us ` A ) e. NN0_s ) -> ( -us ` ( A -s 1s ) ) = ( ( -us ` A ) +s 1s ) ) |
54 |
53
|
sneqd |
|- ( ( A e. No /\ ( -us ` A ) e. NN0_s ) -> { ( -us ` ( A -s 1s ) ) } = { ( ( -us ` A ) +s 1s ) } ) |
55 |
49 54
|
eqtr3d |
|- ( ( A e. No /\ ( -us ` A ) e. NN0_s ) -> ( -us " { ( A -s 1s ) } ) = { ( ( -us ` A ) +s 1s ) } ) |
56 |
46 55
|
oveq12d |
|- ( ( A e. No /\ ( -us ` A ) e. NN0_s ) -> ( ( -us " { ( A +s 1s ) } ) |s ( -us " { ( A -s 1s ) } ) ) = ( { ( ( -us ` A ) -s 1s ) } |s { ( ( -us ` A ) +s 1s ) } ) ) |
57 |
34
|
sltm1d |
|- ( ( A e. No /\ ( -us ` A ) e. NN0_s ) -> ( A -s 1s ) |
58 |
34
|
sltp1d |
|- ( ( A e. No /\ ( -us ` A ) e. NN0_s ) -> A |
59 |
47 34 36 57 58
|
slttrd |
|- ( ( A e. No /\ ( -us ` A ) e. NN0_s ) -> ( A -s 1s ) |
60 |
47 36 59
|
ssltsn |
|- ( ( A e. No /\ ( -us ` A ) e. NN0_s ) -> { ( A -s 1s ) } < |
61 |
|
eqidd |
|- ( ( A e. No /\ ( -us ` A ) e. NN0_s ) -> ( { ( A -s 1s ) } |s { ( A +s 1s ) } ) = ( { ( A -s 1s ) } |s { ( A +s 1s ) } ) ) |
62 |
60 61
|
negsunif |
|- ( ( A e. No /\ ( -us ` A ) e. NN0_s ) -> ( -us ` ( { ( A -s 1s ) } |s { ( A +s 1s ) } ) ) = ( ( -us " { ( A +s 1s ) } ) |s ( -us " { ( A -s 1s ) } ) ) ) |
63 |
|
n0scut |
|- ( ( -us ` A ) e. NN0_s -> ( -us ` A ) = ( { ( ( -us ` A ) -s 1s ) } |s (/) ) ) |
64 |
4
|
a1i |
|- ( ( -us ` A ) e. NN0_s -> 1s e. No ) |
65 |
41 64
|
subscld |
|- ( ( -us ` A ) e. NN0_s -> ( ( -us ` A ) -s 1s ) e. No ) |
66 |
|
snelpwi |
|- ( ( ( -us ` A ) -s 1s ) e. No -> { ( ( -us ` A ) -s 1s ) } e. ~P No ) |
67 |
|
nulssgt |
|- ( { ( ( -us ` A ) -s 1s ) } e. ~P No -> { ( ( -us ` A ) -s 1s ) } < |
68 |
65 66 67
|
3syl |
|- ( ( -us ` A ) e. NN0_s -> { ( ( -us ` A ) -s 1s ) } < |
69 |
|
slerflex |
|- ( ( ( -us ` A ) -s 1s ) e. No -> ( ( -us ` A ) -s 1s ) <_s ( ( -us ` A ) -s 1s ) ) |
70 |
65 69
|
syl |
|- ( ( -us ` A ) e. NN0_s -> ( ( -us ` A ) -s 1s ) <_s ( ( -us ` A ) -s 1s ) ) |
71 |
|
ovex |
|- ( ( -us ` A ) -s 1s ) e. _V |
72 |
|
breq1 |
|- ( x = ( ( -us ` A ) -s 1s ) -> ( x <_s y <-> ( ( -us ` A ) -s 1s ) <_s y ) ) |
73 |
72
|
rexbidv |
|- ( x = ( ( -us ` A ) -s 1s ) -> ( E. y e. { ( ( -us ` A ) -s 1s ) } x <_s y <-> E. y e. { ( ( -us ` A ) -s 1s ) } ( ( -us ` A ) -s 1s ) <_s y ) ) |
74 |
71 73
|
ralsn |
|- ( A. x e. { ( ( -us ` A ) -s 1s ) } E. y e. { ( ( -us ` A ) -s 1s ) } x <_s y <-> E. y e. { ( ( -us ` A ) -s 1s ) } ( ( -us ` A ) -s 1s ) <_s y ) |
75 |
|
breq2 |
|- ( y = ( ( -us ` A ) -s 1s ) -> ( ( ( -us ` A ) -s 1s ) <_s y <-> ( ( -us ` A ) -s 1s ) <_s ( ( -us ` A ) -s 1s ) ) ) |
76 |
71 75
|
rexsn |
|- ( E. y e. { ( ( -us ` A ) -s 1s ) } ( ( -us ` A ) -s 1s ) <_s y <-> ( ( -us ` A ) -s 1s ) <_s ( ( -us ` A ) -s 1s ) ) |
77 |
74 76
|
bitri |
|- ( A. x e. { ( ( -us ` A ) -s 1s ) } E. y e. { ( ( -us ` A ) -s 1s ) } x <_s y <-> ( ( -us ` A ) -s 1s ) <_s ( ( -us ` A ) -s 1s ) ) |
78 |
70 77
|
sylibr |
|- ( ( -us ` A ) e. NN0_s -> A. x e. { ( ( -us ` A ) -s 1s ) } E. y e. { ( ( -us ` A ) -s 1s ) } x <_s y ) |
79 |
|
ral0 |
|- A. x e. (/) E. y e. { ( ( -us ` A ) +s 1s ) } y <_s x |
80 |
79
|
a1i |
|- ( ( -us ` A ) e. NN0_s -> A. x e. (/) E. y e. { ( ( -us ` A ) +s 1s ) } y <_s x ) |
81 |
41
|
sltm1d |
|- ( ( -us ` A ) e. NN0_s -> ( ( -us ` A ) -s 1s ) |
82 |
65 41 81
|
ssltsn |
|- ( ( -us ` A ) e. NN0_s -> { ( ( -us ` A ) -s 1s ) } < |
83 |
63
|
sneqd |
|- ( ( -us ` A ) e. NN0_s -> { ( -us ` A ) } = { ( { ( ( -us ` A ) -s 1s ) } |s (/) ) } ) |
84 |
82 83
|
breqtrd |
|- ( ( -us ` A ) e. NN0_s -> { ( ( -us ` A ) -s 1s ) } < |
85 |
41 64
|
addscld |
|- ( ( -us ` A ) e. NN0_s -> ( ( -us ` A ) +s 1s ) e. No ) |
86 |
41
|
sltp1d |
|- ( ( -us ` A ) e. NN0_s -> ( -us ` A ) |
87 |
41 85 86
|
ssltsn |
|- ( ( -us ` A ) e. NN0_s -> { ( -us ` A ) } < |
88 |
83 87
|
eqbrtrrd |
|- ( ( -us ` A ) e. NN0_s -> { ( { ( ( -us ` A ) -s 1s ) } |s (/) ) } < |
89 |
68 78 80 84 88
|
cofcut1d |
|- ( ( -us ` A ) e. NN0_s -> ( { ( ( -us ` A ) -s 1s ) } |s (/) ) = ( { ( ( -us ` A ) -s 1s ) } |s { ( ( -us ` A ) +s 1s ) } ) ) |
90 |
63 89
|
eqtrd |
|- ( ( -us ` A ) e. NN0_s -> ( -us ` A ) = ( { ( ( -us ` A ) -s 1s ) } |s { ( ( -us ` A ) +s 1s ) } ) ) |
91 |
90
|
adantl |
|- ( ( A e. No /\ ( -us ` A ) e. NN0_s ) -> ( -us ` A ) = ( { ( ( -us ` A ) -s 1s ) } |s { ( ( -us ` A ) +s 1s ) } ) ) |
92 |
56 62 91
|
3eqtr4rd |
|- ( ( A e. No /\ ( -us ` A ) e. NN0_s ) -> ( -us ` A ) = ( -us ` ( { ( A -s 1s ) } |s { ( A +s 1s ) } ) ) ) |
93 |
60
|
scutcld |
|- ( ( A e. No /\ ( -us ` A ) e. NN0_s ) -> ( { ( A -s 1s ) } |s { ( A +s 1s ) } ) e. No ) |
94 |
|
negs11 |
|- ( ( A e. No /\ ( { ( A -s 1s ) } |s { ( A +s 1s ) } ) e. No ) -> ( ( -us ` A ) = ( -us ` ( { ( A -s 1s ) } |s { ( A +s 1s ) } ) ) <-> A = ( { ( A -s 1s ) } |s { ( A +s 1s ) } ) ) ) |
95 |
93 94
|
syldan |
|- ( ( A e. No /\ ( -us ` A ) e. NN0_s ) -> ( ( -us ` A ) = ( -us ` ( { ( A -s 1s ) } |s { ( A +s 1s ) } ) ) <-> A = ( { ( A -s 1s ) } |s { ( A +s 1s ) } ) ) ) |
96 |
92 95
|
mpbid |
|- ( ( A e. No /\ ( -us ` A ) e. NN0_s ) -> A = ( { ( A -s 1s ) } |s { ( A +s 1s ) } ) ) |
97 |
32 96
|
jaodan |
|- ( ( A e. No /\ ( A e. NN0_s \/ ( -us ` A ) e. NN0_s ) ) -> A = ( { ( A -s 1s ) } |s { ( A +s 1s ) } ) ) |
98 |
1 97
|
sylbi |
|- ( A e. ZZ_s -> A = ( { ( A -s 1s ) } |s { ( A +s 1s ) } ) ) |