| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negsunif.1 |  |-  ( ph -> L < | 
						
							| 2 |  | negsunif.2 |  |-  ( ph -> A = ( L |s R ) ) | 
						
							| 3 | 1 | scutcld |  |-  ( ph -> ( L |s R ) e. No ) | 
						
							| 4 | 2 3 | eqeltrd |  |-  ( ph -> A e. No ) | 
						
							| 5 |  | negsval |  |-  ( A e. No -> ( -us ` A ) = ( ( -us " ( _Right ` A ) ) |s ( -us " ( _Left ` A ) ) ) ) | 
						
							| 6 | 4 5 | syl |  |-  ( ph -> ( -us ` A ) = ( ( -us " ( _Right ` A ) ) |s ( -us " ( _Left ` A ) ) ) ) | 
						
							| 7 |  | negscut2 |  |-  ( A e. No -> ( -us " ( _Right ` A ) ) < | 
						
							| 8 | 4 7 | syl |  |-  ( ph -> ( -us " ( _Right ` A ) ) < | 
						
							| 9 | 1 2 | cofcutr2d |  |-  ( ph -> A. c e. ( _Right ` A ) E. d e. R d <_s c ) | 
						
							| 10 |  | negsfn |  |-  -us Fn No | 
						
							| 11 |  | ssltss2 |  |-  ( L < R C_ No ) | 
						
							| 12 | 1 11 | syl |  |-  ( ph -> R C_ No ) | 
						
							| 13 |  | breq2 |  |-  ( b = ( -us ` d ) -> ( ( -us ` c ) <_s b <-> ( -us ` c ) <_s ( -us ` d ) ) ) | 
						
							| 14 | 13 | rexima |  |-  ( ( -us Fn No /\ R C_ No ) -> ( E. b e. ( -us " R ) ( -us ` c ) <_s b <-> E. d e. R ( -us ` c ) <_s ( -us ` d ) ) ) | 
						
							| 15 | 10 12 14 | sylancr |  |-  ( ph -> ( E. b e. ( -us " R ) ( -us ` c ) <_s b <-> E. d e. R ( -us ` c ) <_s ( -us ` d ) ) ) | 
						
							| 16 | 15 | ralbidv |  |-  ( ph -> ( A. c e. ( _Right ` A ) E. b e. ( -us " R ) ( -us ` c ) <_s b <-> A. c e. ( _Right ` A ) E. d e. R ( -us ` c ) <_s ( -us ` d ) ) ) | 
						
							| 17 | 12 | adantr |  |-  ( ( ph /\ c e. ( _Right ` A ) ) -> R C_ No ) | 
						
							| 18 | 17 | sselda |  |-  ( ( ( ph /\ c e. ( _Right ` A ) ) /\ d e. R ) -> d e. No ) | 
						
							| 19 |  | rightssno |  |-  ( _Right ` A ) C_ No | 
						
							| 20 | 19 | sseli |  |-  ( c e. ( _Right ` A ) -> c e. No ) | 
						
							| 21 | 20 | ad2antlr |  |-  ( ( ( ph /\ c e. ( _Right ` A ) ) /\ d e. R ) -> c e. No ) | 
						
							| 22 | 18 21 | slenegd |  |-  ( ( ( ph /\ c e. ( _Right ` A ) ) /\ d e. R ) -> ( d <_s c <-> ( -us ` c ) <_s ( -us ` d ) ) ) | 
						
							| 23 | 22 | rexbidva |  |-  ( ( ph /\ c e. ( _Right ` A ) ) -> ( E. d e. R d <_s c <-> E. d e. R ( -us ` c ) <_s ( -us ` d ) ) ) | 
						
							| 24 | 23 | ralbidva |  |-  ( ph -> ( A. c e. ( _Right ` A ) E. d e. R d <_s c <-> A. c e. ( _Right ` A ) E. d e. R ( -us ` c ) <_s ( -us ` d ) ) ) | 
						
							| 25 | 16 24 | bitr4d |  |-  ( ph -> ( A. c e. ( _Right ` A ) E. b e. ( -us " R ) ( -us ` c ) <_s b <-> A. c e. ( _Right ` A ) E. d e. R d <_s c ) ) | 
						
							| 26 | 9 25 | mpbird |  |-  ( ph -> A. c e. ( _Right ` A ) E. b e. ( -us " R ) ( -us ` c ) <_s b ) | 
						
							| 27 |  | breq1 |  |-  ( a = ( -us ` c ) -> ( a <_s b <-> ( -us ` c ) <_s b ) ) | 
						
							| 28 | 27 | rexbidv |  |-  ( a = ( -us ` c ) -> ( E. b e. ( -us " R ) a <_s b <-> E. b e. ( -us " R ) ( -us ` c ) <_s b ) ) | 
						
							| 29 | 28 | ralima |  |-  ( ( -us Fn No /\ ( _Right ` A ) C_ No ) -> ( A. a e. ( -us " ( _Right ` A ) ) E. b e. ( -us " R ) a <_s b <-> A. c e. ( _Right ` A ) E. b e. ( -us " R ) ( -us ` c ) <_s b ) ) | 
						
							| 30 | 10 19 29 | mp2an |  |-  ( A. a e. ( -us " ( _Right ` A ) ) E. b e. ( -us " R ) a <_s b <-> A. c e. ( _Right ` A ) E. b e. ( -us " R ) ( -us ` c ) <_s b ) | 
						
							| 31 | 26 30 | sylibr |  |-  ( ph -> A. a e. ( -us " ( _Right ` A ) ) E. b e. ( -us " R ) a <_s b ) | 
						
							| 32 | 1 2 | cofcutr1d |  |-  ( ph -> A. c e. ( _Left ` A ) E. d e. L c <_s d ) | 
						
							| 33 |  | ssltss1 |  |-  ( L < L C_ No ) | 
						
							| 34 | 1 33 | syl |  |-  ( ph -> L C_ No ) | 
						
							| 35 |  | breq1 |  |-  ( b = ( -us ` d ) -> ( b <_s ( -us ` c ) <-> ( -us ` d ) <_s ( -us ` c ) ) ) | 
						
							| 36 | 35 | rexima |  |-  ( ( -us Fn No /\ L C_ No ) -> ( E. b e. ( -us " L ) b <_s ( -us ` c ) <-> E. d e. L ( -us ` d ) <_s ( -us ` c ) ) ) | 
						
							| 37 | 10 34 36 | sylancr |  |-  ( ph -> ( E. b e. ( -us " L ) b <_s ( -us ` c ) <-> E. d e. L ( -us ` d ) <_s ( -us ` c ) ) ) | 
						
							| 38 | 37 | ralbidv |  |-  ( ph -> ( A. c e. ( _Left ` A ) E. b e. ( -us " L ) b <_s ( -us ` c ) <-> A. c e. ( _Left ` A ) E. d e. L ( -us ` d ) <_s ( -us ` c ) ) ) | 
						
							| 39 |  | leftssno |  |-  ( _Left ` A ) C_ No | 
						
							| 40 | 39 | sseli |  |-  ( c e. ( _Left ` A ) -> c e. No ) | 
						
							| 41 | 40 | ad2antlr |  |-  ( ( ( ph /\ c e. ( _Left ` A ) ) /\ d e. L ) -> c e. No ) | 
						
							| 42 | 34 | adantr |  |-  ( ( ph /\ c e. ( _Left ` A ) ) -> L C_ No ) | 
						
							| 43 | 42 | sselda |  |-  ( ( ( ph /\ c e. ( _Left ` A ) ) /\ d e. L ) -> d e. No ) | 
						
							| 44 | 41 43 | slenegd |  |-  ( ( ( ph /\ c e. ( _Left ` A ) ) /\ d e. L ) -> ( c <_s d <-> ( -us ` d ) <_s ( -us ` c ) ) ) | 
						
							| 45 | 44 | rexbidva |  |-  ( ( ph /\ c e. ( _Left ` A ) ) -> ( E. d e. L c <_s d <-> E. d e. L ( -us ` d ) <_s ( -us ` c ) ) ) | 
						
							| 46 | 45 | ralbidva |  |-  ( ph -> ( A. c e. ( _Left ` A ) E. d e. L c <_s d <-> A. c e. ( _Left ` A ) E. d e. L ( -us ` d ) <_s ( -us ` c ) ) ) | 
						
							| 47 | 38 46 | bitr4d |  |-  ( ph -> ( A. c e. ( _Left ` A ) E. b e. ( -us " L ) b <_s ( -us ` c ) <-> A. c e. ( _Left ` A ) E. d e. L c <_s d ) ) | 
						
							| 48 | 32 47 | mpbird |  |-  ( ph -> A. c e. ( _Left ` A ) E. b e. ( -us " L ) b <_s ( -us ` c ) ) | 
						
							| 49 |  | breq2 |  |-  ( a = ( -us ` c ) -> ( b <_s a <-> b <_s ( -us ` c ) ) ) | 
						
							| 50 | 49 | rexbidv |  |-  ( a = ( -us ` c ) -> ( E. b e. ( -us " L ) b <_s a <-> E. b e. ( -us " L ) b <_s ( -us ` c ) ) ) | 
						
							| 51 | 50 | ralima |  |-  ( ( -us Fn No /\ ( _Left ` A ) C_ No ) -> ( A. a e. ( -us " ( _Left ` A ) ) E. b e. ( -us " L ) b <_s a <-> A. c e. ( _Left ` A ) E. b e. ( -us " L ) b <_s ( -us ` c ) ) ) | 
						
							| 52 | 10 39 51 | mp2an |  |-  ( A. a e. ( -us " ( _Left ` A ) ) E. b e. ( -us " L ) b <_s a <-> A. c e. ( _Left ` A ) E. b e. ( -us " L ) b <_s ( -us ` c ) ) | 
						
							| 53 | 48 52 | sylibr |  |-  ( ph -> A. a e. ( -us " ( _Left ` A ) ) E. b e. ( -us " L ) b <_s a ) | 
						
							| 54 |  | fnfun |  |-  ( -us Fn No -> Fun -us ) | 
						
							| 55 | 10 54 | ax-mp |  |-  Fun -us | 
						
							| 56 |  | ssltex2 |  |-  ( L < R e. _V ) | 
						
							| 57 | 1 56 | syl |  |-  ( ph -> R e. _V ) | 
						
							| 58 |  | funimaexg |  |-  ( ( Fun -us /\ R e. _V ) -> ( -us " R ) e. _V ) | 
						
							| 59 | 55 57 58 | sylancr |  |-  ( ph -> ( -us " R ) e. _V ) | 
						
							| 60 |  | snex |  |-  { ( -us ` A ) } e. _V | 
						
							| 61 | 60 | a1i |  |-  ( ph -> { ( -us ` A ) } e. _V ) | 
						
							| 62 |  | imassrn |  |-  ( -us " R ) C_ ran -us | 
						
							| 63 |  | negsfo |  |-  -us : No -onto-> No | 
						
							| 64 |  | forn |  |-  ( -us : No -onto-> No -> ran -us = No ) | 
						
							| 65 | 63 64 | ax-mp |  |-  ran -us = No | 
						
							| 66 | 62 65 | sseqtri |  |-  ( -us " R ) C_ No | 
						
							| 67 | 66 | a1i |  |-  ( ph -> ( -us " R ) C_ No ) | 
						
							| 68 | 4 | negscld |  |-  ( ph -> ( -us ` A ) e. No ) | 
						
							| 69 | 68 | snssd |  |-  ( ph -> { ( -us ` A ) } C_ No ) | 
						
							| 70 |  | velsn |  |-  ( a e. { ( -us ` A ) } <-> a = ( -us ` A ) ) | 
						
							| 71 |  | fvelimab |  |-  ( ( -us Fn No /\ R C_ No ) -> ( b e. ( -us " R ) <-> E. d e. R ( -us ` d ) = b ) ) | 
						
							| 72 | 10 12 71 | sylancr |  |-  ( ph -> ( b e. ( -us " R ) <-> E. d e. R ( -us ` d ) = b ) ) | 
						
							| 73 | 2 | sneqd |  |-  ( ph -> { A } = { ( L |s R ) } ) | 
						
							| 74 | 73 | adantr |  |-  ( ( ph /\ d e. R ) -> { A } = { ( L |s R ) } ) | 
						
							| 75 |  | scutcut |  |-  ( L < ( ( L |s R ) e. No /\ L < | 
						
							| 76 | 1 75 | syl |  |-  ( ph -> ( ( L |s R ) e. No /\ L < | 
						
							| 77 | 76 | simp3d |  |-  ( ph -> { ( L |s R ) } < | 
						
							| 78 | 77 | adantr |  |-  ( ( ph /\ d e. R ) -> { ( L |s R ) } < | 
						
							| 79 | 74 78 | eqbrtrd |  |-  ( ( ph /\ d e. R ) -> { A } < | 
						
							| 80 |  | snidg |  |-  ( A e. No -> A e. { A } ) | 
						
							| 81 | 4 80 | syl |  |-  ( ph -> A e. { A } ) | 
						
							| 82 | 81 | adantr |  |-  ( ( ph /\ d e. R ) -> A e. { A } ) | 
						
							| 83 |  | simpr |  |-  ( ( ph /\ d e. R ) -> d e. R ) | 
						
							| 84 | 79 82 83 | ssltsepcd |  |-  ( ( ph /\ d e. R ) -> A  | 
						
							| 85 | 4 | adantr |  |-  ( ( ph /\ d e. R ) -> A e. No ) | 
						
							| 86 | 12 | sselda |  |-  ( ( ph /\ d e. R ) -> d e. No ) | 
						
							| 87 | 85 86 | sltnegd |  |-  ( ( ph /\ d e. R ) -> ( A  ( -us ` d )  | 
						
							| 88 | 84 87 | mpbid |  |-  ( ( ph /\ d e. R ) -> ( -us ` d )  | 
						
							| 89 |  | breq1 |  |-  ( ( -us ` d ) = b -> ( ( -us ` d )  b  | 
						
							| 90 | 88 89 | syl5ibcom |  |-  ( ( ph /\ d e. R ) -> ( ( -us ` d ) = b -> b  | 
						
							| 91 | 90 | rexlimdva |  |-  ( ph -> ( E. d e. R ( -us ` d ) = b -> b  | 
						
							| 92 | 72 91 | sylbid |  |-  ( ph -> ( b e. ( -us " R ) -> b  | 
						
							| 93 |  | breq2 |  |-  ( a = ( -us ` A ) -> ( b  b  | 
						
							| 94 | 93 | imbi2d |  |-  ( a = ( -us ` A ) -> ( ( b e. ( -us " R ) -> b  ( b e. ( -us " R ) -> b  | 
						
							| 95 | 92 94 | syl5ibrcom |  |-  ( ph -> ( a = ( -us ` A ) -> ( b e. ( -us " R ) -> b  | 
						
							| 96 | 70 95 | biimtrid |  |-  ( ph -> ( a e. { ( -us ` A ) } -> ( b e. ( -us " R ) -> b  | 
						
							| 97 | 96 | 3imp |  |-  ( ( ph /\ a e. { ( -us ` A ) } /\ b e. ( -us " R ) ) -> b  | 
						
							| 98 | 97 | 3com23 |  |-  ( ( ph /\ b e. ( -us " R ) /\ a e. { ( -us ` A ) } ) -> b  | 
						
							| 99 | 59 61 67 69 98 | ssltd |  |-  ( ph -> ( -us " R ) < | 
						
							| 100 | 6 | sneqd |  |-  ( ph -> { ( -us ` A ) } = { ( ( -us " ( _Right ` A ) ) |s ( -us " ( _Left ` A ) ) ) } ) | 
						
							| 101 | 99 100 | breqtrd |  |-  ( ph -> ( -us " R ) < | 
						
							| 102 |  | ssltex1 |  |-  ( L < L e. _V ) | 
						
							| 103 | 1 102 | syl |  |-  ( ph -> L e. _V ) | 
						
							| 104 |  | funimaexg |  |-  ( ( Fun -us /\ L e. _V ) -> ( -us " L ) e. _V ) | 
						
							| 105 | 55 103 104 | sylancr |  |-  ( ph -> ( -us " L ) e. _V ) | 
						
							| 106 |  | imassrn |  |-  ( -us " L ) C_ ran -us | 
						
							| 107 | 106 65 | sseqtri |  |-  ( -us " L ) C_ No | 
						
							| 108 | 107 | a1i |  |-  ( ph -> ( -us " L ) C_ No ) | 
						
							| 109 |  | fvelimab |  |-  ( ( -us Fn No /\ L C_ No ) -> ( b e. ( -us " L ) <-> E. c e. L ( -us ` c ) = b ) ) | 
						
							| 110 | 10 34 109 | sylancr |  |-  ( ph -> ( b e. ( -us " L ) <-> E. c e. L ( -us ` c ) = b ) ) | 
						
							| 111 | 1 | adantr |  |-  ( ( ph /\ c e. L ) -> L < | 
						
							| 112 | 111 75 | syl |  |-  ( ( ph /\ c e. L ) -> ( ( L |s R ) e. No /\ L < | 
						
							| 113 | 112 | simp2d |  |-  ( ( ph /\ c e. L ) -> L < | 
						
							| 114 | 73 | adantr |  |-  ( ( ph /\ c e. L ) -> { A } = { ( L |s R ) } ) | 
						
							| 115 | 113 114 | breqtrrd |  |-  ( ( ph /\ c e. L ) -> L < | 
						
							| 116 |  | simpr |  |-  ( ( ph /\ c e. L ) -> c e. L ) | 
						
							| 117 | 81 | adantr |  |-  ( ( ph /\ c e. L ) -> A e. { A } ) | 
						
							| 118 | 115 116 117 | ssltsepcd |  |-  ( ( ph /\ c e. L ) -> c  | 
						
							| 119 | 34 | sselda |  |-  ( ( ph /\ c e. L ) -> c e. No ) | 
						
							| 120 | 4 | adantr |  |-  ( ( ph /\ c e. L ) -> A e. No ) | 
						
							| 121 | 119 120 | sltnegd |  |-  ( ( ph /\ c e. L ) -> ( c  ( -us ` A )  | 
						
							| 122 | 118 121 | mpbid |  |-  ( ( ph /\ c e. L ) -> ( -us ` A )  | 
						
							| 123 |  | breq2 |  |-  ( ( -us ` c ) = b -> ( ( -us ` A )  ( -us ` A )  | 
						
							| 124 | 122 123 | syl5ibcom |  |-  ( ( ph /\ c e. L ) -> ( ( -us ` c ) = b -> ( -us ` A )  | 
						
							| 125 | 124 | rexlimdva |  |-  ( ph -> ( E. c e. L ( -us ` c ) = b -> ( -us ` A )  | 
						
							| 126 | 110 125 | sylbid |  |-  ( ph -> ( b e. ( -us " L ) -> ( -us ` A )  | 
						
							| 127 |  | breq1 |  |-  ( a = ( -us ` A ) -> ( a  ( -us ` A )  | 
						
							| 128 | 127 | imbi2d |  |-  ( a = ( -us ` A ) -> ( ( b e. ( -us " L ) -> a  ( b e. ( -us " L ) -> ( -us ` A )  | 
						
							| 129 | 126 128 | syl5ibrcom |  |-  ( ph -> ( a = ( -us ` A ) -> ( b e. ( -us " L ) -> a  | 
						
							| 130 | 70 129 | biimtrid |  |-  ( ph -> ( a e. { ( -us ` A ) } -> ( b e. ( -us " L ) -> a  | 
						
							| 131 | 130 | 3imp |  |-  ( ( ph /\ a e. { ( -us ` A ) } /\ b e. ( -us " L ) ) -> a  | 
						
							| 132 | 61 105 69 108 131 | ssltd |  |-  ( ph -> { ( -us ` A ) } < | 
						
							| 133 | 100 132 | eqbrtrrd |  |-  ( ph -> { ( ( -us " ( _Right ` A ) ) |s ( -us " ( _Left ` A ) ) ) } < | 
						
							| 134 | 8 31 53 101 133 | cofcut1d |  |-  ( ph -> ( ( -us " ( _Right ` A ) ) |s ( -us " ( _Left ` A ) ) ) = ( ( -us " R ) |s ( -us " L ) ) ) | 
						
							| 135 | 6 134 | eqtrd |  |-  ( ph -> ( -us ` A ) = ( ( -us " R ) |s ( -us " L ) ) ) |