| Step |
Hyp |
Ref |
Expression |
| 1 |
|
negsunif.1 |
|- ( ph -> L < |
| 2 |
|
negsunif.2 |
|- ( ph -> A = ( L |s R ) ) |
| 3 |
1
|
scutcld |
|- ( ph -> ( L |s R ) e. No ) |
| 4 |
2 3
|
eqeltrd |
|- ( ph -> A e. No ) |
| 5 |
|
negsval |
|- ( A e. No -> ( -us ` A ) = ( ( -us " ( _Right ` A ) ) |s ( -us " ( _Left ` A ) ) ) ) |
| 6 |
4 5
|
syl |
|- ( ph -> ( -us ` A ) = ( ( -us " ( _Right ` A ) ) |s ( -us " ( _Left ` A ) ) ) ) |
| 7 |
|
negscut2 |
|- ( A e. No -> ( -us " ( _Right ` A ) ) < |
| 8 |
4 7
|
syl |
|- ( ph -> ( -us " ( _Right ` A ) ) < |
| 9 |
1 2
|
cofcutr2d |
|- ( ph -> A. c e. ( _Right ` A ) E. d e. R d <_s c ) |
| 10 |
|
negsfn |
|- -us Fn No |
| 11 |
|
ssltss2 |
|- ( L < R C_ No ) |
| 12 |
1 11
|
syl |
|- ( ph -> R C_ No ) |
| 13 |
|
breq2 |
|- ( b = ( -us ` d ) -> ( ( -us ` c ) <_s b <-> ( -us ` c ) <_s ( -us ` d ) ) ) |
| 14 |
13
|
rexima |
|- ( ( -us Fn No /\ R C_ No ) -> ( E. b e. ( -us " R ) ( -us ` c ) <_s b <-> E. d e. R ( -us ` c ) <_s ( -us ` d ) ) ) |
| 15 |
10 12 14
|
sylancr |
|- ( ph -> ( E. b e. ( -us " R ) ( -us ` c ) <_s b <-> E. d e. R ( -us ` c ) <_s ( -us ` d ) ) ) |
| 16 |
15
|
ralbidv |
|- ( ph -> ( A. c e. ( _Right ` A ) E. b e. ( -us " R ) ( -us ` c ) <_s b <-> A. c e. ( _Right ` A ) E. d e. R ( -us ` c ) <_s ( -us ` d ) ) ) |
| 17 |
12
|
adantr |
|- ( ( ph /\ c e. ( _Right ` A ) ) -> R C_ No ) |
| 18 |
17
|
sselda |
|- ( ( ( ph /\ c e. ( _Right ` A ) ) /\ d e. R ) -> d e. No ) |
| 19 |
|
rightssno |
|- ( _Right ` A ) C_ No |
| 20 |
19
|
sseli |
|- ( c e. ( _Right ` A ) -> c e. No ) |
| 21 |
20
|
ad2antlr |
|- ( ( ( ph /\ c e. ( _Right ` A ) ) /\ d e. R ) -> c e. No ) |
| 22 |
18 21
|
slenegd |
|- ( ( ( ph /\ c e. ( _Right ` A ) ) /\ d e. R ) -> ( d <_s c <-> ( -us ` c ) <_s ( -us ` d ) ) ) |
| 23 |
22
|
rexbidva |
|- ( ( ph /\ c e. ( _Right ` A ) ) -> ( E. d e. R d <_s c <-> E. d e. R ( -us ` c ) <_s ( -us ` d ) ) ) |
| 24 |
23
|
ralbidva |
|- ( ph -> ( A. c e. ( _Right ` A ) E. d e. R d <_s c <-> A. c e. ( _Right ` A ) E. d e. R ( -us ` c ) <_s ( -us ` d ) ) ) |
| 25 |
16 24
|
bitr4d |
|- ( ph -> ( A. c e. ( _Right ` A ) E. b e. ( -us " R ) ( -us ` c ) <_s b <-> A. c e. ( _Right ` A ) E. d e. R d <_s c ) ) |
| 26 |
9 25
|
mpbird |
|- ( ph -> A. c e. ( _Right ` A ) E. b e. ( -us " R ) ( -us ` c ) <_s b ) |
| 27 |
|
breq1 |
|- ( a = ( -us ` c ) -> ( a <_s b <-> ( -us ` c ) <_s b ) ) |
| 28 |
27
|
rexbidv |
|- ( a = ( -us ` c ) -> ( E. b e. ( -us " R ) a <_s b <-> E. b e. ( -us " R ) ( -us ` c ) <_s b ) ) |
| 29 |
28
|
ralima |
|- ( ( -us Fn No /\ ( _Right ` A ) C_ No ) -> ( A. a e. ( -us " ( _Right ` A ) ) E. b e. ( -us " R ) a <_s b <-> A. c e. ( _Right ` A ) E. b e. ( -us " R ) ( -us ` c ) <_s b ) ) |
| 30 |
10 19 29
|
mp2an |
|- ( A. a e. ( -us " ( _Right ` A ) ) E. b e. ( -us " R ) a <_s b <-> A. c e. ( _Right ` A ) E. b e. ( -us " R ) ( -us ` c ) <_s b ) |
| 31 |
26 30
|
sylibr |
|- ( ph -> A. a e. ( -us " ( _Right ` A ) ) E. b e. ( -us " R ) a <_s b ) |
| 32 |
1 2
|
cofcutr1d |
|- ( ph -> A. c e. ( _Left ` A ) E. d e. L c <_s d ) |
| 33 |
|
ssltss1 |
|- ( L < L C_ No ) |
| 34 |
1 33
|
syl |
|- ( ph -> L C_ No ) |
| 35 |
|
breq1 |
|- ( b = ( -us ` d ) -> ( b <_s ( -us ` c ) <-> ( -us ` d ) <_s ( -us ` c ) ) ) |
| 36 |
35
|
rexima |
|- ( ( -us Fn No /\ L C_ No ) -> ( E. b e. ( -us " L ) b <_s ( -us ` c ) <-> E. d e. L ( -us ` d ) <_s ( -us ` c ) ) ) |
| 37 |
10 34 36
|
sylancr |
|- ( ph -> ( E. b e. ( -us " L ) b <_s ( -us ` c ) <-> E. d e. L ( -us ` d ) <_s ( -us ` c ) ) ) |
| 38 |
37
|
ralbidv |
|- ( ph -> ( A. c e. ( _Left ` A ) E. b e. ( -us " L ) b <_s ( -us ` c ) <-> A. c e. ( _Left ` A ) E. d e. L ( -us ` d ) <_s ( -us ` c ) ) ) |
| 39 |
|
leftssno |
|- ( _Left ` A ) C_ No |
| 40 |
39
|
sseli |
|- ( c e. ( _Left ` A ) -> c e. No ) |
| 41 |
40
|
ad2antlr |
|- ( ( ( ph /\ c e. ( _Left ` A ) ) /\ d e. L ) -> c e. No ) |
| 42 |
34
|
adantr |
|- ( ( ph /\ c e. ( _Left ` A ) ) -> L C_ No ) |
| 43 |
42
|
sselda |
|- ( ( ( ph /\ c e. ( _Left ` A ) ) /\ d e. L ) -> d e. No ) |
| 44 |
41 43
|
slenegd |
|- ( ( ( ph /\ c e. ( _Left ` A ) ) /\ d e. L ) -> ( c <_s d <-> ( -us ` d ) <_s ( -us ` c ) ) ) |
| 45 |
44
|
rexbidva |
|- ( ( ph /\ c e. ( _Left ` A ) ) -> ( E. d e. L c <_s d <-> E. d e. L ( -us ` d ) <_s ( -us ` c ) ) ) |
| 46 |
45
|
ralbidva |
|- ( ph -> ( A. c e. ( _Left ` A ) E. d e. L c <_s d <-> A. c e. ( _Left ` A ) E. d e. L ( -us ` d ) <_s ( -us ` c ) ) ) |
| 47 |
38 46
|
bitr4d |
|- ( ph -> ( A. c e. ( _Left ` A ) E. b e. ( -us " L ) b <_s ( -us ` c ) <-> A. c e. ( _Left ` A ) E. d e. L c <_s d ) ) |
| 48 |
32 47
|
mpbird |
|- ( ph -> A. c e. ( _Left ` A ) E. b e. ( -us " L ) b <_s ( -us ` c ) ) |
| 49 |
|
breq2 |
|- ( a = ( -us ` c ) -> ( b <_s a <-> b <_s ( -us ` c ) ) ) |
| 50 |
49
|
rexbidv |
|- ( a = ( -us ` c ) -> ( E. b e. ( -us " L ) b <_s a <-> E. b e. ( -us " L ) b <_s ( -us ` c ) ) ) |
| 51 |
50
|
ralima |
|- ( ( -us Fn No /\ ( _Left ` A ) C_ No ) -> ( A. a e. ( -us " ( _Left ` A ) ) E. b e. ( -us " L ) b <_s a <-> A. c e. ( _Left ` A ) E. b e. ( -us " L ) b <_s ( -us ` c ) ) ) |
| 52 |
10 39 51
|
mp2an |
|- ( A. a e. ( -us " ( _Left ` A ) ) E. b e. ( -us " L ) b <_s a <-> A. c e. ( _Left ` A ) E. b e. ( -us " L ) b <_s ( -us ` c ) ) |
| 53 |
48 52
|
sylibr |
|- ( ph -> A. a e. ( -us " ( _Left ` A ) ) E. b e. ( -us " L ) b <_s a ) |
| 54 |
|
fnfun |
|- ( -us Fn No -> Fun -us ) |
| 55 |
10 54
|
ax-mp |
|- Fun -us |
| 56 |
|
ssltex2 |
|- ( L < R e. _V ) |
| 57 |
1 56
|
syl |
|- ( ph -> R e. _V ) |
| 58 |
|
funimaexg |
|- ( ( Fun -us /\ R e. _V ) -> ( -us " R ) e. _V ) |
| 59 |
55 57 58
|
sylancr |
|- ( ph -> ( -us " R ) e. _V ) |
| 60 |
|
snex |
|- { ( -us ` A ) } e. _V |
| 61 |
60
|
a1i |
|- ( ph -> { ( -us ` A ) } e. _V ) |
| 62 |
|
imassrn |
|- ( -us " R ) C_ ran -us |
| 63 |
|
negsfo |
|- -us : No -onto-> No |
| 64 |
|
forn |
|- ( -us : No -onto-> No -> ran -us = No ) |
| 65 |
63 64
|
ax-mp |
|- ran -us = No |
| 66 |
62 65
|
sseqtri |
|- ( -us " R ) C_ No |
| 67 |
66
|
a1i |
|- ( ph -> ( -us " R ) C_ No ) |
| 68 |
4
|
negscld |
|- ( ph -> ( -us ` A ) e. No ) |
| 69 |
68
|
snssd |
|- ( ph -> { ( -us ` A ) } C_ No ) |
| 70 |
|
velsn |
|- ( a e. { ( -us ` A ) } <-> a = ( -us ` A ) ) |
| 71 |
|
fvelimab |
|- ( ( -us Fn No /\ R C_ No ) -> ( b e. ( -us " R ) <-> E. d e. R ( -us ` d ) = b ) ) |
| 72 |
10 12 71
|
sylancr |
|- ( ph -> ( b e. ( -us " R ) <-> E. d e. R ( -us ` d ) = b ) ) |
| 73 |
2
|
sneqd |
|- ( ph -> { A } = { ( L |s R ) } ) |
| 74 |
73
|
adantr |
|- ( ( ph /\ d e. R ) -> { A } = { ( L |s R ) } ) |
| 75 |
|
scutcut |
|- ( L < ( ( L |s R ) e. No /\ L < |
| 76 |
1 75
|
syl |
|- ( ph -> ( ( L |s R ) e. No /\ L < |
| 77 |
76
|
simp3d |
|- ( ph -> { ( L |s R ) } < |
| 78 |
77
|
adantr |
|- ( ( ph /\ d e. R ) -> { ( L |s R ) } < |
| 79 |
74 78
|
eqbrtrd |
|- ( ( ph /\ d e. R ) -> { A } < |
| 80 |
|
snidg |
|- ( A e. No -> A e. { A } ) |
| 81 |
4 80
|
syl |
|- ( ph -> A e. { A } ) |
| 82 |
81
|
adantr |
|- ( ( ph /\ d e. R ) -> A e. { A } ) |
| 83 |
|
simpr |
|- ( ( ph /\ d e. R ) -> d e. R ) |
| 84 |
79 82 83
|
ssltsepcd |
|- ( ( ph /\ d e. R ) -> A |
| 85 |
4
|
adantr |
|- ( ( ph /\ d e. R ) -> A e. No ) |
| 86 |
12
|
sselda |
|- ( ( ph /\ d e. R ) -> d e. No ) |
| 87 |
85 86
|
sltnegd |
|- ( ( ph /\ d e. R ) -> ( A ( -us ` d ) |
| 88 |
84 87
|
mpbid |
|- ( ( ph /\ d e. R ) -> ( -us ` d ) |
| 89 |
|
breq1 |
|- ( ( -us ` d ) = b -> ( ( -us ` d ) b |
| 90 |
88 89
|
syl5ibcom |
|- ( ( ph /\ d e. R ) -> ( ( -us ` d ) = b -> b |
| 91 |
90
|
rexlimdva |
|- ( ph -> ( E. d e. R ( -us ` d ) = b -> b |
| 92 |
72 91
|
sylbid |
|- ( ph -> ( b e. ( -us " R ) -> b |
| 93 |
|
breq2 |
|- ( a = ( -us ` A ) -> ( b b |
| 94 |
93
|
imbi2d |
|- ( a = ( -us ` A ) -> ( ( b e. ( -us " R ) -> b ( b e. ( -us " R ) -> b |
| 95 |
92 94
|
syl5ibrcom |
|- ( ph -> ( a = ( -us ` A ) -> ( b e. ( -us " R ) -> b |
| 96 |
70 95
|
biimtrid |
|- ( ph -> ( a e. { ( -us ` A ) } -> ( b e. ( -us " R ) -> b |
| 97 |
96
|
3imp |
|- ( ( ph /\ a e. { ( -us ` A ) } /\ b e. ( -us " R ) ) -> b |
| 98 |
97
|
3com23 |
|- ( ( ph /\ b e. ( -us " R ) /\ a e. { ( -us ` A ) } ) -> b |
| 99 |
59 61 67 69 98
|
ssltd |
|- ( ph -> ( -us " R ) < |
| 100 |
6
|
sneqd |
|- ( ph -> { ( -us ` A ) } = { ( ( -us " ( _Right ` A ) ) |s ( -us " ( _Left ` A ) ) ) } ) |
| 101 |
99 100
|
breqtrd |
|- ( ph -> ( -us " R ) < |
| 102 |
|
ssltex1 |
|- ( L < L e. _V ) |
| 103 |
1 102
|
syl |
|- ( ph -> L e. _V ) |
| 104 |
|
funimaexg |
|- ( ( Fun -us /\ L e. _V ) -> ( -us " L ) e. _V ) |
| 105 |
55 103 104
|
sylancr |
|- ( ph -> ( -us " L ) e. _V ) |
| 106 |
|
imassrn |
|- ( -us " L ) C_ ran -us |
| 107 |
106 65
|
sseqtri |
|- ( -us " L ) C_ No |
| 108 |
107
|
a1i |
|- ( ph -> ( -us " L ) C_ No ) |
| 109 |
|
fvelimab |
|- ( ( -us Fn No /\ L C_ No ) -> ( b e. ( -us " L ) <-> E. c e. L ( -us ` c ) = b ) ) |
| 110 |
10 34 109
|
sylancr |
|- ( ph -> ( b e. ( -us " L ) <-> E. c e. L ( -us ` c ) = b ) ) |
| 111 |
1
|
adantr |
|- ( ( ph /\ c e. L ) -> L < |
| 112 |
111 75
|
syl |
|- ( ( ph /\ c e. L ) -> ( ( L |s R ) e. No /\ L < |
| 113 |
112
|
simp2d |
|- ( ( ph /\ c e. L ) -> L < |
| 114 |
73
|
adantr |
|- ( ( ph /\ c e. L ) -> { A } = { ( L |s R ) } ) |
| 115 |
113 114
|
breqtrrd |
|- ( ( ph /\ c e. L ) -> L < |
| 116 |
|
simpr |
|- ( ( ph /\ c e. L ) -> c e. L ) |
| 117 |
81
|
adantr |
|- ( ( ph /\ c e. L ) -> A e. { A } ) |
| 118 |
115 116 117
|
ssltsepcd |
|- ( ( ph /\ c e. L ) -> c |
| 119 |
34
|
sselda |
|- ( ( ph /\ c e. L ) -> c e. No ) |
| 120 |
4
|
adantr |
|- ( ( ph /\ c e. L ) -> A e. No ) |
| 121 |
119 120
|
sltnegd |
|- ( ( ph /\ c e. L ) -> ( c ( -us ` A ) |
| 122 |
118 121
|
mpbid |
|- ( ( ph /\ c e. L ) -> ( -us ` A ) |
| 123 |
|
breq2 |
|- ( ( -us ` c ) = b -> ( ( -us ` A ) ( -us ` A ) |
| 124 |
122 123
|
syl5ibcom |
|- ( ( ph /\ c e. L ) -> ( ( -us ` c ) = b -> ( -us ` A ) |
| 125 |
124
|
rexlimdva |
|- ( ph -> ( E. c e. L ( -us ` c ) = b -> ( -us ` A ) |
| 126 |
110 125
|
sylbid |
|- ( ph -> ( b e. ( -us " L ) -> ( -us ` A ) |
| 127 |
|
breq1 |
|- ( a = ( -us ` A ) -> ( a ( -us ` A ) |
| 128 |
127
|
imbi2d |
|- ( a = ( -us ` A ) -> ( ( b e. ( -us " L ) -> a ( b e. ( -us " L ) -> ( -us ` A ) |
| 129 |
126 128
|
syl5ibrcom |
|- ( ph -> ( a = ( -us ` A ) -> ( b e. ( -us " L ) -> a |
| 130 |
70 129
|
biimtrid |
|- ( ph -> ( a e. { ( -us ` A ) } -> ( b e. ( -us " L ) -> a |
| 131 |
130
|
3imp |
|- ( ( ph /\ a e. { ( -us ` A ) } /\ b e. ( -us " L ) ) -> a |
| 132 |
61 105 69 108 131
|
ssltd |
|- ( ph -> { ( -us ` A ) } < |
| 133 |
100 132
|
eqbrtrrd |
|- ( ph -> { ( ( -us " ( _Right ` A ) ) |s ( -us " ( _Left ` A ) ) ) } < |
| 134 |
8 31 53 101 133
|
cofcut1d |
|- ( ph -> ( ( -us " ( _Right ` A ) ) |s ( -us " ( _Left ` A ) ) ) = ( ( -us " R ) |s ( -us " L ) ) ) |
| 135 |
6 134
|
eqtrd |
|- ( ph -> ( -us ` A ) = ( ( -us " R ) |s ( -us " L ) ) ) |