| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negsunif.1 | ⊢ ( 𝜑  →  𝐿  <<s  𝑅 ) | 
						
							| 2 |  | negsunif.2 | ⊢ ( 𝜑  →  𝐴  =  ( 𝐿  |s  𝑅 ) ) | 
						
							| 3 | 1 | scutcld | ⊢ ( 𝜑  →  ( 𝐿  |s  𝑅 )  ∈   No  ) | 
						
							| 4 | 2 3 | eqeltrd | ⊢ ( 𝜑  →  𝐴  ∈   No  ) | 
						
							| 5 |  | negsval | ⊢ ( 𝐴  ∈   No   →  (  -us  ‘ 𝐴 )  =  ( (  -us   “  (  R  ‘ 𝐴 ) )  |s  (  -us   “  (  L  ‘ 𝐴 ) ) ) ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝜑  →  (  -us  ‘ 𝐴 )  =  ( (  -us   “  (  R  ‘ 𝐴 ) )  |s  (  -us   “  (  L  ‘ 𝐴 ) ) ) ) | 
						
							| 7 |  | negscut2 | ⊢ ( 𝐴  ∈   No   →  (  -us   “  (  R  ‘ 𝐴 ) )  <<s  (  -us   “  (  L  ‘ 𝐴 ) ) ) | 
						
							| 8 | 4 7 | syl | ⊢ ( 𝜑  →  (  -us   “  (  R  ‘ 𝐴 ) )  <<s  (  -us   “  (  L  ‘ 𝐴 ) ) ) | 
						
							| 9 | 1 2 | cofcutr2d | ⊢ ( 𝜑  →  ∀ 𝑐  ∈  (  R  ‘ 𝐴 ) ∃ 𝑑  ∈  𝑅 𝑑  ≤s  𝑐 ) | 
						
							| 10 |  | negsfn | ⊢  -us   Fn   No | 
						
							| 11 |  | ssltss2 | ⊢ ( 𝐿  <<s  𝑅  →  𝑅  ⊆   No  ) | 
						
							| 12 | 1 11 | syl | ⊢ ( 𝜑  →  𝑅  ⊆   No  ) | 
						
							| 13 |  | breq2 | ⊢ ( 𝑏  =  (  -us  ‘ 𝑑 )  →  ( (  -us  ‘ 𝑐 )  ≤s  𝑏  ↔  (  -us  ‘ 𝑐 )  ≤s  (  -us  ‘ 𝑑 ) ) ) | 
						
							| 14 | 13 | rexima | ⊢ ( (  -us   Fn   No   ∧  𝑅  ⊆   No  )  →  ( ∃ 𝑏  ∈  (  -us   “  𝑅 ) (  -us  ‘ 𝑐 )  ≤s  𝑏  ↔  ∃ 𝑑  ∈  𝑅 (  -us  ‘ 𝑐 )  ≤s  (  -us  ‘ 𝑑 ) ) ) | 
						
							| 15 | 10 12 14 | sylancr | ⊢ ( 𝜑  →  ( ∃ 𝑏  ∈  (  -us   “  𝑅 ) (  -us  ‘ 𝑐 )  ≤s  𝑏  ↔  ∃ 𝑑  ∈  𝑅 (  -us  ‘ 𝑐 )  ≤s  (  -us  ‘ 𝑑 ) ) ) | 
						
							| 16 | 15 | ralbidv | ⊢ ( 𝜑  →  ( ∀ 𝑐  ∈  (  R  ‘ 𝐴 ) ∃ 𝑏  ∈  (  -us   “  𝑅 ) (  -us  ‘ 𝑐 )  ≤s  𝑏  ↔  ∀ 𝑐  ∈  (  R  ‘ 𝐴 ) ∃ 𝑑  ∈  𝑅 (  -us  ‘ 𝑐 )  ≤s  (  -us  ‘ 𝑑 ) ) ) | 
						
							| 17 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  (  R  ‘ 𝐴 ) )  →  𝑅  ⊆   No  ) | 
						
							| 18 | 17 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  (  R  ‘ 𝐴 ) )  ∧  𝑑  ∈  𝑅 )  →  𝑑  ∈   No  ) | 
						
							| 19 |  | rightssno | ⊢ (  R  ‘ 𝐴 )  ⊆   No | 
						
							| 20 | 19 | sseli | ⊢ ( 𝑐  ∈  (  R  ‘ 𝐴 )  →  𝑐  ∈   No  ) | 
						
							| 21 | 20 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  (  R  ‘ 𝐴 ) )  ∧  𝑑  ∈  𝑅 )  →  𝑐  ∈   No  ) | 
						
							| 22 | 18 21 | slenegd | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  (  R  ‘ 𝐴 ) )  ∧  𝑑  ∈  𝑅 )  →  ( 𝑑  ≤s  𝑐  ↔  (  -us  ‘ 𝑐 )  ≤s  (  -us  ‘ 𝑑 ) ) ) | 
						
							| 23 | 22 | rexbidva | ⊢ ( ( 𝜑  ∧  𝑐  ∈  (  R  ‘ 𝐴 ) )  →  ( ∃ 𝑑  ∈  𝑅 𝑑  ≤s  𝑐  ↔  ∃ 𝑑  ∈  𝑅 (  -us  ‘ 𝑐 )  ≤s  (  -us  ‘ 𝑑 ) ) ) | 
						
							| 24 | 23 | ralbidva | ⊢ ( 𝜑  →  ( ∀ 𝑐  ∈  (  R  ‘ 𝐴 ) ∃ 𝑑  ∈  𝑅 𝑑  ≤s  𝑐  ↔  ∀ 𝑐  ∈  (  R  ‘ 𝐴 ) ∃ 𝑑  ∈  𝑅 (  -us  ‘ 𝑐 )  ≤s  (  -us  ‘ 𝑑 ) ) ) | 
						
							| 25 | 16 24 | bitr4d | ⊢ ( 𝜑  →  ( ∀ 𝑐  ∈  (  R  ‘ 𝐴 ) ∃ 𝑏  ∈  (  -us   “  𝑅 ) (  -us  ‘ 𝑐 )  ≤s  𝑏  ↔  ∀ 𝑐  ∈  (  R  ‘ 𝐴 ) ∃ 𝑑  ∈  𝑅 𝑑  ≤s  𝑐 ) ) | 
						
							| 26 | 9 25 | mpbird | ⊢ ( 𝜑  →  ∀ 𝑐  ∈  (  R  ‘ 𝐴 ) ∃ 𝑏  ∈  (  -us   “  𝑅 ) (  -us  ‘ 𝑐 )  ≤s  𝑏 ) | 
						
							| 27 |  | breq1 | ⊢ ( 𝑎  =  (  -us  ‘ 𝑐 )  →  ( 𝑎  ≤s  𝑏  ↔  (  -us  ‘ 𝑐 )  ≤s  𝑏 ) ) | 
						
							| 28 | 27 | rexbidv | ⊢ ( 𝑎  =  (  -us  ‘ 𝑐 )  →  ( ∃ 𝑏  ∈  (  -us   “  𝑅 ) 𝑎  ≤s  𝑏  ↔  ∃ 𝑏  ∈  (  -us   “  𝑅 ) (  -us  ‘ 𝑐 )  ≤s  𝑏 ) ) | 
						
							| 29 | 28 | ralima | ⊢ ( (  -us   Fn   No   ∧  (  R  ‘ 𝐴 )  ⊆   No  )  →  ( ∀ 𝑎  ∈  (  -us   “  (  R  ‘ 𝐴 ) ) ∃ 𝑏  ∈  (  -us   “  𝑅 ) 𝑎  ≤s  𝑏  ↔  ∀ 𝑐  ∈  (  R  ‘ 𝐴 ) ∃ 𝑏  ∈  (  -us   “  𝑅 ) (  -us  ‘ 𝑐 )  ≤s  𝑏 ) ) | 
						
							| 30 | 10 19 29 | mp2an | ⊢ ( ∀ 𝑎  ∈  (  -us   “  (  R  ‘ 𝐴 ) ) ∃ 𝑏  ∈  (  -us   “  𝑅 ) 𝑎  ≤s  𝑏  ↔  ∀ 𝑐  ∈  (  R  ‘ 𝐴 ) ∃ 𝑏  ∈  (  -us   “  𝑅 ) (  -us  ‘ 𝑐 )  ≤s  𝑏 ) | 
						
							| 31 | 26 30 | sylibr | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  (  -us   “  (  R  ‘ 𝐴 ) ) ∃ 𝑏  ∈  (  -us   “  𝑅 ) 𝑎  ≤s  𝑏 ) | 
						
							| 32 | 1 2 | cofcutr1d | ⊢ ( 𝜑  →  ∀ 𝑐  ∈  (  L  ‘ 𝐴 ) ∃ 𝑑  ∈  𝐿 𝑐  ≤s  𝑑 ) | 
						
							| 33 |  | ssltss1 | ⊢ ( 𝐿  <<s  𝑅  →  𝐿  ⊆   No  ) | 
						
							| 34 | 1 33 | syl | ⊢ ( 𝜑  →  𝐿  ⊆   No  ) | 
						
							| 35 |  | breq1 | ⊢ ( 𝑏  =  (  -us  ‘ 𝑑 )  →  ( 𝑏  ≤s  (  -us  ‘ 𝑐 )  ↔  (  -us  ‘ 𝑑 )  ≤s  (  -us  ‘ 𝑐 ) ) ) | 
						
							| 36 | 35 | rexima | ⊢ ( (  -us   Fn   No   ∧  𝐿  ⊆   No  )  →  ( ∃ 𝑏  ∈  (  -us   “  𝐿 ) 𝑏  ≤s  (  -us  ‘ 𝑐 )  ↔  ∃ 𝑑  ∈  𝐿 (  -us  ‘ 𝑑 )  ≤s  (  -us  ‘ 𝑐 ) ) ) | 
						
							| 37 | 10 34 36 | sylancr | ⊢ ( 𝜑  →  ( ∃ 𝑏  ∈  (  -us   “  𝐿 ) 𝑏  ≤s  (  -us  ‘ 𝑐 )  ↔  ∃ 𝑑  ∈  𝐿 (  -us  ‘ 𝑑 )  ≤s  (  -us  ‘ 𝑐 ) ) ) | 
						
							| 38 | 37 | ralbidv | ⊢ ( 𝜑  →  ( ∀ 𝑐  ∈  (  L  ‘ 𝐴 ) ∃ 𝑏  ∈  (  -us   “  𝐿 ) 𝑏  ≤s  (  -us  ‘ 𝑐 )  ↔  ∀ 𝑐  ∈  (  L  ‘ 𝐴 ) ∃ 𝑑  ∈  𝐿 (  -us  ‘ 𝑑 )  ≤s  (  -us  ‘ 𝑐 ) ) ) | 
						
							| 39 |  | leftssno | ⊢ (  L  ‘ 𝐴 )  ⊆   No | 
						
							| 40 | 39 | sseli | ⊢ ( 𝑐  ∈  (  L  ‘ 𝐴 )  →  𝑐  ∈   No  ) | 
						
							| 41 | 40 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  (  L  ‘ 𝐴 ) )  ∧  𝑑  ∈  𝐿 )  →  𝑐  ∈   No  ) | 
						
							| 42 | 34 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  (  L  ‘ 𝐴 ) )  →  𝐿  ⊆   No  ) | 
						
							| 43 | 42 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  (  L  ‘ 𝐴 ) )  ∧  𝑑  ∈  𝐿 )  →  𝑑  ∈   No  ) | 
						
							| 44 | 41 43 | slenegd | ⊢ ( ( ( 𝜑  ∧  𝑐  ∈  (  L  ‘ 𝐴 ) )  ∧  𝑑  ∈  𝐿 )  →  ( 𝑐  ≤s  𝑑  ↔  (  -us  ‘ 𝑑 )  ≤s  (  -us  ‘ 𝑐 ) ) ) | 
						
							| 45 | 44 | rexbidva | ⊢ ( ( 𝜑  ∧  𝑐  ∈  (  L  ‘ 𝐴 ) )  →  ( ∃ 𝑑  ∈  𝐿 𝑐  ≤s  𝑑  ↔  ∃ 𝑑  ∈  𝐿 (  -us  ‘ 𝑑 )  ≤s  (  -us  ‘ 𝑐 ) ) ) | 
						
							| 46 | 45 | ralbidva | ⊢ ( 𝜑  →  ( ∀ 𝑐  ∈  (  L  ‘ 𝐴 ) ∃ 𝑑  ∈  𝐿 𝑐  ≤s  𝑑  ↔  ∀ 𝑐  ∈  (  L  ‘ 𝐴 ) ∃ 𝑑  ∈  𝐿 (  -us  ‘ 𝑑 )  ≤s  (  -us  ‘ 𝑐 ) ) ) | 
						
							| 47 | 38 46 | bitr4d | ⊢ ( 𝜑  →  ( ∀ 𝑐  ∈  (  L  ‘ 𝐴 ) ∃ 𝑏  ∈  (  -us   “  𝐿 ) 𝑏  ≤s  (  -us  ‘ 𝑐 )  ↔  ∀ 𝑐  ∈  (  L  ‘ 𝐴 ) ∃ 𝑑  ∈  𝐿 𝑐  ≤s  𝑑 ) ) | 
						
							| 48 | 32 47 | mpbird | ⊢ ( 𝜑  →  ∀ 𝑐  ∈  (  L  ‘ 𝐴 ) ∃ 𝑏  ∈  (  -us   “  𝐿 ) 𝑏  ≤s  (  -us  ‘ 𝑐 ) ) | 
						
							| 49 |  | breq2 | ⊢ ( 𝑎  =  (  -us  ‘ 𝑐 )  →  ( 𝑏  ≤s  𝑎  ↔  𝑏  ≤s  (  -us  ‘ 𝑐 ) ) ) | 
						
							| 50 | 49 | rexbidv | ⊢ ( 𝑎  =  (  -us  ‘ 𝑐 )  →  ( ∃ 𝑏  ∈  (  -us   “  𝐿 ) 𝑏  ≤s  𝑎  ↔  ∃ 𝑏  ∈  (  -us   “  𝐿 ) 𝑏  ≤s  (  -us  ‘ 𝑐 ) ) ) | 
						
							| 51 | 50 | ralima | ⊢ ( (  -us   Fn   No   ∧  (  L  ‘ 𝐴 )  ⊆   No  )  →  ( ∀ 𝑎  ∈  (  -us   “  (  L  ‘ 𝐴 ) ) ∃ 𝑏  ∈  (  -us   “  𝐿 ) 𝑏  ≤s  𝑎  ↔  ∀ 𝑐  ∈  (  L  ‘ 𝐴 ) ∃ 𝑏  ∈  (  -us   “  𝐿 ) 𝑏  ≤s  (  -us  ‘ 𝑐 ) ) ) | 
						
							| 52 | 10 39 51 | mp2an | ⊢ ( ∀ 𝑎  ∈  (  -us   “  (  L  ‘ 𝐴 ) ) ∃ 𝑏  ∈  (  -us   “  𝐿 ) 𝑏  ≤s  𝑎  ↔  ∀ 𝑐  ∈  (  L  ‘ 𝐴 ) ∃ 𝑏  ∈  (  -us   “  𝐿 ) 𝑏  ≤s  (  -us  ‘ 𝑐 ) ) | 
						
							| 53 | 48 52 | sylibr | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  (  -us   “  (  L  ‘ 𝐴 ) ) ∃ 𝑏  ∈  (  -us   “  𝐿 ) 𝑏  ≤s  𝑎 ) | 
						
							| 54 |  | fnfun | ⊢ (  -us   Fn   No   →  Fun   -us  ) | 
						
							| 55 | 10 54 | ax-mp | ⊢ Fun   -us | 
						
							| 56 |  | ssltex2 | ⊢ ( 𝐿  <<s  𝑅  →  𝑅  ∈  V ) | 
						
							| 57 | 1 56 | syl | ⊢ ( 𝜑  →  𝑅  ∈  V ) | 
						
							| 58 |  | funimaexg | ⊢ ( ( Fun   -us   ∧  𝑅  ∈  V )  →  (  -us   “  𝑅 )  ∈  V ) | 
						
							| 59 | 55 57 58 | sylancr | ⊢ ( 𝜑  →  (  -us   “  𝑅 )  ∈  V ) | 
						
							| 60 |  | snex | ⊢ { (  -us  ‘ 𝐴 ) }  ∈  V | 
						
							| 61 | 60 | a1i | ⊢ ( 𝜑  →  { (  -us  ‘ 𝐴 ) }  ∈  V ) | 
						
							| 62 |  | imassrn | ⊢ (  -us   “  𝑅 )  ⊆  ran   -us | 
						
							| 63 |  | negsfo | ⊢  -us  :  No  –onto→  No | 
						
							| 64 |  | forn | ⊢ (  -us  :  No  –onto→  No   →  ran   -us   =   No  ) | 
						
							| 65 | 63 64 | ax-mp | ⊢ ran   -us   =   No | 
						
							| 66 | 62 65 | sseqtri | ⊢ (  -us   “  𝑅 )  ⊆   No | 
						
							| 67 | 66 | a1i | ⊢ ( 𝜑  →  (  -us   “  𝑅 )  ⊆   No  ) | 
						
							| 68 | 4 | negscld | ⊢ ( 𝜑  →  (  -us  ‘ 𝐴 )  ∈   No  ) | 
						
							| 69 | 68 | snssd | ⊢ ( 𝜑  →  { (  -us  ‘ 𝐴 ) }  ⊆   No  ) | 
						
							| 70 |  | velsn | ⊢ ( 𝑎  ∈  { (  -us  ‘ 𝐴 ) }  ↔  𝑎  =  (  -us  ‘ 𝐴 ) ) | 
						
							| 71 |  | fvelimab | ⊢ ( (  -us   Fn   No   ∧  𝑅  ⊆   No  )  →  ( 𝑏  ∈  (  -us   “  𝑅 )  ↔  ∃ 𝑑  ∈  𝑅 (  -us  ‘ 𝑑 )  =  𝑏 ) ) | 
						
							| 72 | 10 12 71 | sylancr | ⊢ ( 𝜑  →  ( 𝑏  ∈  (  -us   “  𝑅 )  ↔  ∃ 𝑑  ∈  𝑅 (  -us  ‘ 𝑑 )  =  𝑏 ) ) | 
						
							| 73 | 2 | sneqd | ⊢ ( 𝜑  →  { 𝐴 }  =  { ( 𝐿  |s  𝑅 ) } ) | 
						
							| 74 | 73 | adantr | ⊢ ( ( 𝜑  ∧  𝑑  ∈  𝑅 )  →  { 𝐴 }  =  { ( 𝐿  |s  𝑅 ) } ) | 
						
							| 75 |  | scutcut | ⊢ ( 𝐿  <<s  𝑅  →  ( ( 𝐿  |s  𝑅 )  ∈   No   ∧  𝐿  <<s  { ( 𝐿  |s  𝑅 ) }  ∧  { ( 𝐿  |s  𝑅 ) }  <<s  𝑅 ) ) | 
						
							| 76 | 1 75 | syl | ⊢ ( 𝜑  →  ( ( 𝐿  |s  𝑅 )  ∈   No   ∧  𝐿  <<s  { ( 𝐿  |s  𝑅 ) }  ∧  { ( 𝐿  |s  𝑅 ) }  <<s  𝑅 ) ) | 
						
							| 77 | 76 | simp3d | ⊢ ( 𝜑  →  { ( 𝐿  |s  𝑅 ) }  <<s  𝑅 ) | 
						
							| 78 | 77 | adantr | ⊢ ( ( 𝜑  ∧  𝑑  ∈  𝑅 )  →  { ( 𝐿  |s  𝑅 ) }  <<s  𝑅 ) | 
						
							| 79 | 74 78 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑑  ∈  𝑅 )  →  { 𝐴 }  <<s  𝑅 ) | 
						
							| 80 |  | snidg | ⊢ ( 𝐴  ∈   No   →  𝐴  ∈  { 𝐴 } ) | 
						
							| 81 | 4 80 | syl | ⊢ ( 𝜑  →  𝐴  ∈  { 𝐴 } ) | 
						
							| 82 | 81 | adantr | ⊢ ( ( 𝜑  ∧  𝑑  ∈  𝑅 )  →  𝐴  ∈  { 𝐴 } ) | 
						
							| 83 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑑  ∈  𝑅 )  →  𝑑  ∈  𝑅 ) | 
						
							| 84 | 79 82 83 | ssltsepcd | ⊢ ( ( 𝜑  ∧  𝑑  ∈  𝑅 )  →  𝐴  <s  𝑑 ) | 
						
							| 85 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑑  ∈  𝑅 )  →  𝐴  ∈   No  ) | 
						
							| 86 | 12 | sselda | ⊢ ( ( 𝜑  ∧  𝑑  ∈  𝑅 )  →  𝑑  ∈   No  ) | 
						
							| 87 | 85 86 | sltnegd | ⊢ ( ( 𝜑  ∧  𝑑  ∈  𝑅 )  →  ( 𝐴  <s  𝑑  ↔  (  -us  ‘ 𝑑 )  <s  (  -us  ‘ 𝐴 ) ) ) | 
						
							| 88 | 84 87 | mpbid | ⊢ ( ( 𝜑  ∧  𝑑  ∈  𝑅 )  →  (  -us  ‘ 𝑑 )  <s  (  -us  ‘ 𝐴 ) ) | 
						
							| 89 |  | breq1 | ⊢ ( (  -us  ‘ 𝑑 )  =  𝑏  →  ( (  -us  ‘ 𝑑 )  <s  (  -us  ‘ 𝐴 )  ↔  𝑏  <s  (  -us  ‘ 𝐴 ) ) ) | 
						
							| 90 | 88 89 | syl5ibcom | ⊢ ( ( 𝜑  ∧  𝑑  ∈  𝑅 )  →  ( (  -us  ‘ 𝑑 )  =  𝑏  →  𝑏  <s  (  -us  ‘ 𝐴 ) ) ) | 
						
							| 91 | 90 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑑  ∈  𝑅 (  -us  ‘ 𝑑 )  =  𝑏  →  𝑏  <s  (  -us  ‘ 𝐴 ) ) ) | 
						
							| 92 | 72 91 | sylbid | ⊢ ( 𝜑  →  ( 𝑏  ∈  (  -us   “  𝑅 )  →  𝑏  <s  (  -us  ‘ 𝐴 ) ) ) | 
						
							| 93 |  | breq2 | ⊢ ( 𝑎  =  (  -us  ‘ 𝐴 )  →  ( 𝑏  <s  𝑎  ↔  𝑏  <s  (  -us  ‘ 𝐴 ) ) ) | 
						
							| 94 | 93 | imbi2d | ⊢ ( 𝑎  =  (  -us  ‘ 𝐴 )  →  ( ( 𝑏  ∈  (  -us   “  𝑅 )  →  𝑏  <s  𝑎 )  ↔  ( 𝑏  ∈  (  -us   “  𝑅 )  →  𝑏  <s  (  -us  ‘ 𝐴 ) ) ) ) | 
						
							| 95 | 92 94 | syl5ibrcom | ⊢ ( 𝜑  →  ( 𝑎  =  (  -us  ‘ 𝐴 )  →  ( 𝑏  ∈  (  -us   “  𝑅 )  →  𝑏  <s  𝑎 ) ) ) | 
						
							| 96 | 70 95 | biimtrid | ⊢ ( 𝜑  →  ( 𝑎  ∈  { (  -us  ‘ 𝐴 ) }  →  ( 𝑏  ∈  (  -us   “  𝑅 )  →  𝑏  <s  𝑎 ) ) ) | 
						
							| 97 | 96 | 3imp | ⊢ ( ( 𝜑  ∧  𝑎  ∈  { (  -us  ‘ 𝐴 ) }  ∧  𝑏  ∈  (  -us   “  𝑅 ) )  →  𝑏  <s  𝑎 ) | 
						
							| 98 | 97 | 3com23 | ⊢ ( ( 𝜑  ∧  𝑏  ∈  (  -us   “  𝑅 )  ∧  𝑎  ∈  { (  -us  ‘ 𝐴 ) } )  →  𝑏  <s  𝑎 ) | 
						
							| 99 | 59 61 67 69 98 | ssltd | ⊢ ( 𝜑  →  (  -us   “  𝑅 )  <<s  { (  -us  ‘ 𝐴 ) } ) | 
						
							| 100 | 6 | sneqd | ⊢ ( 𝜑  →  { (  -us  ‘ 𝐴 ) }  =  { ( (  -us   “  (  R  ‘ 𝐴 ) )  |s  (  -us   “  (  L  ‘ 𝐴 ) ) ) } ) | 
						
							| 101 | 99 100 | breqtrd | ⊢ ( 𝜑  →  (  -us   “  𝑅 )  <<s  { ( (  -us   “  (  R  ‘ 𝐴 ) )  |s  (  -us   “  (  L  ‘ 𝐴 ) ) ) } ) | 
						
							| 102 |  | ssltex1 | ⊢ ( 𝐿  <<s  𝑅  →  𝐿  ∈  V ) | 
						
							| 103 | 1 102 | syl | ⊢ ( 𝜑  →  𝐿  ∈  V ) | 
						
							| 104 |  | funimaexg | ⊢ ( ( Fun   -us   ∧  𝐿  ∈  V )  →  (  -us   “  𝐿 )  ∈  V ) | 
						
							| 105 | 55 103 104 | sylancr | ⊢ ( 𝜑  →  (  -us   “  𝐿 )  ∈  V ) | 
						
							| 106 |  | imassrn | ⊢ (  -us   “  𝐿 )  ⊆  ran   -us | 
						
							| 107 | 106 65 | sseqtri | ⊢ (  -us   “  𝐿 )  ⊆   No | 
						
							| 108 | 107 | a1i | ⊢ ( 𝜑  →  (  -us   “  𝐿 )  ⊆   No  ) | 
						
							| 109 |  | fvelimab | ⊢ ( (  -us   Fn   No   ∧  𝐿  ⊆   No  )  →  ( 𝑏  ∈  (  -us   “  𝐿 )  ↔  ∃ 𝑐  ∈  𝐿 (  -us  ‘ 𝑐 )  =  𝑏 ) ) | 
						
							| 110 | 10 34 109 | sylancr | ⊢ ( 𝜑  →  ( 𝑏  ∈  (  -us   “  𝐿 )  ↔  ∃ 𝑐  ∈  𝐿 (  -us  ‘ 𝑐 )  =  𝑏 ) ) | 
						
							| 111 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐿 )  →  𝐿  <<s  𝑅 ) | 
						
							| 112 | 111 75 | syl | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐿 )  →  ( ( 𝐿  |s  𝑅 )  ∈   No   ∧  𝐿  <<s  { ( 𝐿  |s  𝑅 ) }  ∧  { ( 𝐿  |s  𝑅 ) }  <<s  𝑅 ) ) | 
						
							| 113 | 112 | simp2d | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐿 )  →  𝐿  <<s  { ( 𝐿  |s  𝑅 ) } ) | 
						
							| 114 | 73 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐿 )  →  { 𝐴 }  =  { ( 𝐿  |s  𝑅 ) } ) | 
						
							| 115 | 113 114 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐿 )  →  𝐿  <<s  { 𝐴 } ) | 
						
							| 116 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐿 )  →  𝑐  ∈  𝐿 ) | 
						
							| 117 | 81 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐿 )  →  𝐴  ∈  { 𝐴 } ) | 
						
							| 118 | 115 116 117 | ssltsepcd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐿 )  →  𝑐  <s  𝐴 ) | 
						
							| 119 | 34 | sselda | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐿 )  →  𝑐  ∈   No  ) | 
						
							| 120 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐿 )  →  𝐴  ∈   No  ) | 
						
							| 121 | 119 120 | sltnegd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐿 )  →  ( 𝑐  <s  𝐴  ↔  (  -us  ‘ 𝐴 )  <s  (  -us  ‘ 𝑐 ) ) ) | 
						
							| 122 | 118 121 | mpbid | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐿 )  →  (  -us  ‘ 𝐴 )  <s  (  -us  ‘ 𝑐 ) ) | 
						
							| 123 |  | breq2 | ⊢ ( (  -us  ‘ 𝑐 )  =  𝑏  →  ( (  -us  ‘ 𝐴 )  <s  (  -us  ‘ 𝑐 )  ↔  (  -us  ‘ 𝐴 )  <s  𝑏 ) ) | 
						
							| 124 | 122 123 | syl5ibcom | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐿 )  →  ( (  -us  ‘ 𝑐 )  =  𝑏  →  (  -us  ‘ 𝐴 )  <s  𝑏 ) ) | 
						
							| 125 | 124 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑐  ∈  𝐿 (  -us  ‘ 𝑐 )  =  𝑏  →  (  -us  ‘ 𝐴 )  <s  𝑏 ) ) | 
						
							| 126 | 110 125 | sylbid | ⊢ ( 𝜑  →  ( 𝑏  ∈  (  -us   “  𝐿 )  →  (  -us  ‘ 𝐴 )  <s  𝑏 ) ) | 
						
							| 127 |  | breq1 | ⊢ ( 𝑎  =  (  -us  ‘ 𝐴 )  →  ( 𝑎  <s  𝑏  ↔  (  -us  ‘ 𝐴 )  <s  𝑏 ) ) | 
						
							| 128 | 127 | imbi2d | ⊢ ( 𝑎  =  (  -us  ‘ 𝐴 )  →  ( ( 𝑏  ∈  (  -us   “  𝐿 )  →  𝑎  <s  𝑏 )  ↔  ( 𝑏  ∈  (  -us   “  𝐿 )  →  (  -us  ‘ 𝐴 )  <s  𝑏 ) ) ) | 
						
							| 129 | 126 128 | syl5ibrcom | ⊢ ( 𝜑  →  ( 𝑎  =  (  -us  ‘ 𝐴 )  →  ( 𝑏  ∈  (  -us   “  𝐿 )  →  𝑎  <s  𝑏 ) ) ) | 
						
							| 130 | 70 129 | biimtrid | ⊢ ( 𝜑  →  ( 𝑎  ∈  { (  -us  ‘ 𝐴 ) }  →  ( 𝑏  ∈  (  -us   “  𝐿 )  →  𝑎  <s  𝑏 ) ) ) | 
						
							| 131 | 130 | 3imp | ⊢ ( ( 𝜑  ∧  𝑎  ∈  { (  -us  ‘ 𝐴 ) }  ∧  𝑏  ∈  (  -us   “  𝐿 ) )  →  𝑎  <s  𝑏 ) | 
						
							| 132 | 61 105 69 108 131 | ssltd | ⊢ ( 𝜑  →  { (  -us  ‘ 𝐴 ) }  <<s  (  -us   “  𝐿 ) ) | 
						
							| 133 | 100 132 | eqbrtrrd | ⊢ ( 𝜑  →  { ( (  -us   “  (  R  ‘ 𝐴 ) )  |s  (  -us   “  (  L  ‘ 𝐴 ) ) ) }  <<s  (  -us   “  𝐿 ) ) | 
						
							| 134 | 8 31 53 101 133 | cofcut1d | ⊢ ( 𝜑  →  ( (  -us   “  (  R  ‘ 𝐴 ) )  |s  (  -us   “  (  L  ‘ 𝐴 ) ) )  =  ( (  -us   “  𝑅 )  |s  (  -us   “  𝐿 ) ) ) | 
						
							| 135 | 6 134 | eqtrd | ⊢ ( 𝜑  →  (  -us  ‘ 𝐴 )  =  ( (  -us   “  𝑅 )  |s  (  -us   “  𝐿 ) ) ) |