| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negsf | ⊢  -us  :  No  ⟶  No | 
						
							| 2 |  | negscl | ⊢ ( 𝑥  ∈   No   →  (  -us  ‘ 𝑥 )  ∈   No  ) | 
						
							| 3 |  | negnegs | ⊢ ( 𝑥  ∈   No   →  (  -us  ‘ (  -us  ‘ 𝑥 ) )  =  𝑥 ) | 
						
							| 4 | 3 | eqcomd | ⊢ ( 𝑥  ∈   No   →  𝑥  =  (  -us  ‘ (  -us  ‘ 𝑥 ) ) ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑦  =  (  -us  ‘ 𝑥 )  →  (  -us  ‘ 𝑦 )  =  (  -us  ‘ (  -us  ‘ 𝑥 ) ) ) | 
						
							| 6 | 5 | eqeq2d | ⊢ ( 𝑦  =  (  -us  ‘ 𝑥 )  →  ( 𝑥  =  (  -us  ‘ 𝑦 )  ↔  𝑥  =  (  -us  ‘ (  -us  ‘ 𝑥 ) ) ) ) | 
						
							| 7 | 6 | rspcev | ⊢ ( ( (  -us  ‘ 𝑥 )  ∈   No   ∧  𝑥  =  (  -us  ‘ (  -us  ‘ 𝑥 ) ) )  →  ∃ 𝑦  ∈   No  𝑥  =  (  -us  ‘ 𝑦 ) ) | 
						
							| 8 | 2 4 7 | syl2anc | ⊢ ( 𝑥  ∈   No   →  ∃ 𝑦  ∈   No  𝑥  =  (  -us  ‘ 𝑦 ) ) | 
						
							| 9 | 8 | rgen | ⊢ ∀ 𝑥  ∈   No  ∃ 𝑦  ∈   No  𝑥  =  (  -us  ‘ 𝑦 ) | 
						
							| 10 |  | dffo3 | ⊢ (  -us  :  No  –onto→  No   ↔  (  -us  :  No  ⟶  No   ∧  ∀ 𝑥  ∈   No  ∃ 𝑦  ∈   No  𝑥  =  (  -us  ‘ 𝑦 ) ) ) | 
						
							| 11 | 1 9 10 | mpbir2an | ⊢  -us  :  No  –onto→  No |