Metamath Proof Explorer


Theorem negsfo

Description: Function statement for surreal negation. (Contributed by Scott Fenton, 3-Feb-2025)

Ref Expression
Assertion negsfo
|- -us : No -onto-> No

Proof

Step Hyp Ref Expression
1 negsf
 |-  -us : No --> No
2 negscl
 |-  ( x e. No -> ( -us ` x ) e. No )
3 negnegs
 |-  ( x e. No -> ( -us ` ( -us ` x ) ) = x )
4 3 eqcomd
 |-  ( x e. No -> x = ( -us ` ( -us ` x ) ) )
5 fveq2
 |-  ( y = ( -us ` x ) -> ( -us ` y ) = ( -us ` ( -us ` x ) ) )
6 5 eqeq2d
 |-  ( y = ( -us ` x ) -> ( x = ( -us ` y ) <-> x = ( -us ` ( -us ` x ) ) ) )
7 6 rspcev
 |-  ( ( ( -us ` x ) e. No /\ x = ( -us ` ( -us ` x ) ) ) -> E. y e. No x = ( -us ` y ) )
8 2 4 7 syl2anc
 |-  ( x e. No -> E. y e. No x = ( -us ` y ) )
9 8 rgen
 |-  A. x e. No E. y e. No x = ( -us ` y )
10 dffo3
 |-  ( -us : No -onto-> No <-> ( -us : No --> No /\ A. x e. No E. y e. No x = ( -us ` y ) ) )
11 1 9 10 mpbir2an
 |-  -us : No -onto-> No