Step |
Hyp |
Ref |
Expression |
1 |
|
negsf |
|- -us : No --> No |
2 |
|
negscl |
|- ( x e. No -> ( -us ` x ) e. No ) |
3 |
|
negnegs |
|- ( x e. No -> ( -us ` ( -us ` x ) ) = x ) |
4 |
3
|
eqcomd |
|- ( x e. No -> x = ( -us ` ( -us ` x ) ) ) |
5 |
|
fveq2 |
|- ( y = ( -us ` x ) -> ( -us ` y ) = ( -us ` ( -us ` x ) ) ) |
6 |
5
|
eqeq2d |
|- ( y = ( -us ` x ) -> ( x = ( -us ` y ) <-> x = ( -us ` ( -us ` x ) ) ) ) |
7 |
6
|
rspcev |
|- ( ( ( -us ` x ) e. No /\ x = ( -us ` ( -us ` x ) ) ) -> E. y e. No x = ( -us ` y ) ) |
8 |
2 4 7
|
syl2anc |
|- ( x e. No -> E. y e. No x = ( -us ` y ) ) |
9 |
8
|
rgen |
|- A. x e. No E. y e. No x = ( -us ` y ) |
10 |
|
dffo3 |
|- ( -us : No -onto-> No <-> ( -us : No --> No /\ A. x e. No E. y e. No x = ( -us ` y ) ) ) |
11 |
1 9 10
|
mpbir2an |
|- -us : No -onto-> No |