| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negsf |  |-  -us : No --> No | 
						
							| 2 |  | negscl |  |-  ( x e. No -> ( -us ` x ) e. No ) | 
						
							| 3 |  | negnegs |  |-  ( x e. No -> ( -us ` ( -us ` x ) ) = x ) | 
						
							| 4 | 3 | eqcomd |  |-  ( x e. No -> x = ( -us ` ( -us ` x ) ) ) | 
						
							| 5 |  | fveq2 |  |-  ( y = ( -us ` x ) -> ( -us ` y ) = ( -us ` ( -us ` x ) ) ) | 
						
							| 6 | 5 | eqeq2d |  |-  ( y = ( -us ` x ) -> ( x = ( -us ` y ) <-> x = ( -us ` ( -us ` x ) ) ) ) | 
						
							| 7 | 6 | rspcev |  |-  ( ( ( -us ` x ) e. No /\ x = ( -us ` ( -us ` x ) ) ) -> E. y e. No x = ( -us ` y ) ) | 
						
							| 8 | 2 4 7 | syl2anc |  |-  ( x e. No -> E. y e. No x = ( -us ` y ) ) | 
						
							| 9 | 8 | rgen |  |-  A. x e. No E. y e. No x = ( -us ` y ) | 
						
							| 10 |  | dffo3 |  |-  ( -us : No -onto-> No <-> ( -us : No --> No /\ A. x e. No E. y e. No x = ( -us ` y ) ) ) | 
						
							| 11 | 1 9 10 | mpbir2an |  |-  -us : No -onto-> No |