| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negsf | ⊢  -us  :  No  ⟶  No | 
						
							| 2 |  | negs11 | ⊢ ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  →  ( (  -us  ‘ 𝑥 )  =  (  -us  ‘ 𝑦 )  ↔  𝑥  =  𝑦 ) ) | 
						
							| 3 | 2 | biimpd | ⊢ ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  →  ( (  -us  ‘ 𝑥 )  =  (  -us  ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 4 | 3 | rgen2 | ⊢ ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( (  -us  ‘ 𝑥 )  =  (  -us  ‘ 𝑦 )  →  𝑥  =  𝑦 ) | 
						
							| 5 |  | dff13 | ⊢ (  -us  :  No  –1-1→  No   ↔  (  -us  :  No  ⟶  No   ∧  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( (  -us  ‘ 𝑥 )  =  (  -us  ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 6 | 1 4 5 | mpbir2an | ⊢  -us  :  No  –1-1→  No | 
						
							| 7 |  | negsfo | ⊢  -us  :  No  –onto→  No | 
						
							| 8 |  | df-f1o | ⊢ (  -us  :  No  –1-1-onto→  No   ↔  (  -us  :  No  –1-1→  No   ∧   -us  :  No  –onto→  No  ) ) | 
						
							| 9 | 6 7 8 | mpbir2an | ⊢  -us  :  No  –1-1-onto→  No |