Metamath Proof Explorer


Theorem cofcutr2d

Description: If X is the cut of A and B , then B is coinitial with ( _RightX ) . Second half of theorem 2.9 of Gonshor p. 12. (Contributed by Scott Fenton, 25-Sep-2024)

Ref Expression
Hypotheses cofcutrd.1
|- ( ph -> A <
cofcutrd.2
|- ( ph -> X = ( A |s B ) )
Assertion cofcutr2d
|- ( ph -> A. z e. ( _Right ` X ) E. w e. B w <_s z )

Proof

Step Hyp Ref Expression
1 cofcutrd.1
 |-  ( ph -> A <
2 cofcutrd.2
 |-  ( ph -> X = ( A |s B ) )
3 cofcutr
 |-  ( ( A < ( A. x e. ( _Left ` X ) E. y e. A x <_s y /\ A. z e. ( _Right ` X ) E. w e. B w <_s z ) )
4 1 2 3 syl2anc
 |-  ( ph -> ( A. x e. ( _Left ` X ) E. y e. A x <_s y /\ A. z e. ( _Right ` X ) E. w e. B w <_s z ) )
5 4 simprd
 |-  ( ph -> A. z e. ( _Right ` X ) E. w e. B w <_s z )