Step |
Hyp |
Ref |
Expression |
1 |
|
ssun1 |
|- A C_ ( A u. B ) |
2 |
|
sstr |
|- ( ( A C_ ( A u. B ) /\ ( A u. B ) C_ ( _Old ` ( bday ` X ) ) ) -> A C_ ( _Old ` ( bday ` X ) ) ) |
3 |
1 2
|
mpan |
|- ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) -> A C_ ( _Old ` ( bday ` X ) ) ) |
4 |
3
|
3ad2ant1 |
|- ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < A C_ ( _Old ` ( bday ` X ) ) ) |
5 |
4
|
sselda |
|- ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < x e. ( _Old ` ( bday ` X ) ) ) |
6 |
|
simpl2 |
|- ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < A < |
7 |
|
scutcut |
|- ( A < ( ( A |s B ) e. No /\ A < |
8 |
6 7
|
syl |
|- ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < ( ( A |s B ) e. No /\ A < |
9 |
8
|
simp2d |
|- ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < A < |
10 |
|
simpr |
|- ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < x e. A ) |
11 |
|
ovex |
|- ( A |s B ) e. _V |
12 |
11
|
snid |
|- ( A |s B ) e. { ( A |s B ) } |
13 |
12
|
a1i |
|- ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < ( A |s B ) e. { ( A |s B ) } ) |
14 |
9 10 13
|
ssltsepcd |
|- ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < x |
15 |
|
simpl3 |
|- ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < X = ( A |s B ) ) |
16 |
14 15
|
breqtrrd |
|- ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < x |
17 |
|
leftval |
|- ( _L ` X ) = { x e. ( _Old ` ( bday ` X ) ) | x |
18 |
17
|
a1i |
|- ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < ( _L ` X ) = { x e. ( _Old ` ( bday ` X ) ) | x |
19 |
18
|
eleq2d |
|- ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < ( x e. ( _L ` X ) <-> x e. { x e. ( _Old ` ( bday ` X ) ) | x |
20 |
|
rabid |
|- ( x e. { x e. ( _Old ` ( bday ` X ) ) | x ( x e. ( _Old ` ( bday ` X ) ) /\ x |
21 |
19 20
|
bitrdi |
|- ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < ( x e. ( _L ` X ) <-> ( x e. ( _Old ` ( bday ` X ) ) /\ x |
22 |
5 16 21
|
mpbir2and |
|- ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < x e. ( _L ` X ) ) |
23 |
|
leftssno |
|- ( _L ` X ) C_ No |
24 |
23 22
|
sselid |
|- ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < x e. No ) |
25 |
|
slerflex |
|- ( x e. No -> x <_s x ) |
26 |
24 25
|
syl |
|- ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < x <_s x ) |
27 |
|
breq2 |
|- ( y = x -> ( x <_s y <-> x <_s x ) ) |
28 |
27
|
rspcev |
|- ( ( x e. ( _L ` X ) /\ x <_s x ) -> E. y e. ( _L ` X ) x <_s y ) |
29 |
22 26 28
|
syl2anc |
|- ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < E. y e. ( _L ` X ) x <_s y ) |
30 |
29
|
ralrimiva |
|- ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < A. x e. A E. y e. ( _L ` X ) x <_s y ) |
31 |
|
ssun2 |
|- B C_ ( A u. B ) |
32 |
|
sstr |
|- ( ( B C_ ( A u. B ) /\ ( A u. B ) C_ ( _Old ` ( bday ` X ) ) ) -> B C_ ( _Old ` ( bday ` X ) ) ) |
33 |
31 32
|
mpan |
|- ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) -> B C_ ( _Old ` ( bday ` X ) ) ) |
34 |
33
|
3ad2ant1 |
|- ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < B C_ ( _Old ` ( bday ` X ) ) ) |
35 |
34
|
sselda |
|- ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < z e. ( _Old ` ( bday ` X ) ) ) |
36 |
|
simpl3 |
|- ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < X = ( A |s B ) ) |
37 |
|
simpl2 |
|- ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < A < |
38 |
37 7
|
syl |
|- ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < ( ( A |s B ) e. No /\ A < |
39 |
38
|
simp3d |
|- ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < { ( A |s B ) } < |
40 |
12
|
a1i |
|- ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < ( A |s B ) e. { ( A |s B ) } ) |
41 |
|
simpr |
|- ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < z e. B ) |
42 |
39 40 41
|
ssltsepcd |
|- ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < ( A |s B ) |
43 |
36 42
|
eqbrtrd |
|- ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < X |
44 |
|
rightval |
|- ( _R ` X ) = { z e. ( _Old ` ( bday ` X ) ) | X |
45 |
44
|
a1i |
|- ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < ( _R ` X ) = { z e. ( _Old ` ( bday ` X ) ) | X |
46 |
45
|
eleq2d |
|- ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < ( z e. ( _R ` X ) <-> z e. { z e. ( _Old ` ( bday ` X ) ) | X |
47 |
|
rabid |
|- ( z e. { z e. ( _Old ` ( bday ` X ) ) | X ( z e. ( _Old ` ( bday ` X ) ) /\ X |
48 |
46 47
|
bitrdi |
|- ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < ( z e. ( _R ` X ) <-> ( z e. ( _Old ` ( bday ` X ) ) /\ X |
49 |
35 43 48
|
mpbir2and |
|- ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < z e. ( _R ` X ) ) |
50 |
|
rightssno |
|- ( _R ` X ) C_ No |
51 |
50 49
|
sselid |
|- ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < z e. No ) |
52 |
|
slerflex |
|- ( z e. No -> z <_s z ) |
53 |
51 52
|
syl |
|- ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < z <_s z ) |
54 |
|
breq1 |
|- ( w = z -> ( w <_s z <-> z <_s z ) ) |
55 |
54
|
rspcev |
|- ( ( z e. ( _R ` X ) /\ z <_s z ) -> E. w e. ( _R ` X ) w <_s z ) |
56 |
49 53 55
|
syl2anc |
|- ( ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < E. w e. ( _R ` X ) w <_s z ) |
57 |
56
|
ralrimiva |
|- ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < A. z e. B E. w e. ( _R ` X ) w <_s z ) |
58 |
30 57
|
jca |
|- ( ( ( A u. B ) C_ ( _Old ` ( bday ` X ) ) /\ A < ( A. x e. A E. y e. ( _L ` X ) x <_s y /\ A. z e. B E. w e. ( _R ` X ) w <_s z ) ) |