Metamath Proof Explorer


Theorem cofcutrtime

Description: If X is the cut of A and B and all of A and B are older than X , then (LX ) is cofinal with A and ( RX ) is coinitial with B . Note: we will call a cut where all of the elements of the cut are older than the cut itself a "timely" cut. Part of Theorem 4.02(12) of Alling p. 125. (Contributed by Scott Fenton, 27-Sep-2024)

Ref Expression
Assertion cofcutrtime ( ( ( 𝐴𝐵 ) ⊆ ( O ‘ ( bday 𝑋 ) ) ∧ 𝐴 <<s 𝐵𝑋 = ( 𝐴 |s 𝐵 ) ) → ( ∀ 𝑥𝐴𝑦 ∈ ( L ‘ 𝑋 ) 𝑥 ≤s 𝑦 ∧ ∀ 𝑧𝐵𝑤 ∈ ( R ‘ 𝑋 ) 𝑤 ≤s 𝑧 ) )

Proof

Step Hyp Ref Expression
1 ssun1 𝐴 ⊆ ( 𝐴𝐵 )
2 sstr ( ( 𝐴 ⊆ ( 𝐴𝐵 ) ∧ ( 𝐴𝐵 ) ⊆ ( O ‘ ( bday 𝑋 ) ) ) → 𝐴 ⊆ ( O ‘ ( bday 𝑋 ) ) )
3 1 2 mpan ( ( 𝐴𝐵 ) ⊆ ( O ‘ ( bday 𝑋 ) ) → 𝐴 ⊆ ( O ‘ ( bday 𝑋 ) ) )
4 3 3ad2ant1 ( ( ( 𝐴𝐵 ) ⊆ ( O ‘ ( bday 𝑋 ) ) ∧ 𝐴 <<s 𝐵𝑋 = ( 𝐴 |s 𝐵 ) ) → 𝐴 ⊆ ( O ‘ ( bday 𝑋 ) ) )
5 4 sselda ( ( ( ( 𝐴𝐵 ) ⊆ ( O ‘ ( bday 𝑋 ) ) ∧ 𝐴 <<s 𝐵𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥𝐴 ) → 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) )
6 simpl2 ( ( ( ( 𝐴𝐵 ) ⊆ ( O ‘ ( bday 𝑋 ) ) ∧ 𝐴 <<s 𝐵𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥𝐴 ) → 𝐴 <<s 𝐵 )
7 scutcut ( 𝐴 <<s 𝐵 → ( ( 𝐴 |s 𝐵 ) ∈ No 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) )
8 6 7 syl ( ( ( ( 𝐴𝐵 ) ⊆ ( O ‘ ( bday 𝑋 ) ) ∧ 𝐴 <<s 𝐵𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥𝐴 ) → ( ( 𝐴 |s 𝐵 ) ∈ No 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) )
9 8 simp2d ( ( ( ( 𝐴𝐵 ) ⊆ ( O ‘ ( bday 𝑋 ) ) ∧ 𝐴 <<s 𝐵𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥𝐴 ) → 𝐴 <<s { ( 𝐴 |s 𝐵 ) } )
10 simpr ( ( ( ( 𝐴𝐵 ) ⊆ ( O ‘ ( bday 𝑋 ) ) ∧ 𝐴 <<s 𝐵𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥𝐴 ) → 𝑥𝐴 )
11 ovex ( 𝐴 |s 𝐵 ) ∈ V
12 11 snid ( 𝐴 |s 𝐵 ) ∈ { ( 𝐴 |s 𝐵 ) }
13 12 a1i ( ( ( ( 𝐴𝐵 ) ⊆ ( O ‘ ( bday 𝑋 ) ) ∧ 𝐴 <<s 𝐵𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥𝐴 ) → ( 𝐴 |s 𝐵 ) ∈ { ( 𝐴 |s 𝐵 ) } )
14 9 10 13 ssltsepcd ( ( ( ( 𝐴𝐵 ) ⊆ ( O ‘ ( bday 𝑋 ) ) ∧ 𝐴 <<s 𝐵𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥𝐴 ) → 𝑥 <s ( 𝐴 |s 𝐵 ) )
15 simpl3 ( ( ( ( 𝐴𝐵 ) ⊆ ( O ‘ ( bday 𝑋 ) ) ∧ 𝐴 <<s 𝐵𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥𝐴 ) → 𝑋 = ( 𝐴 |s 𝐵 ) )
16 14 15 breqtrrd ( ( ( ( 𝐴𝐵 ) ⊆ ( O ‘ ( bday 𝑋 ) ) ∧ 𝐴 <<s 𝐵𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥𝐴 ) → 𝑥 <s 𝑋 )
17 leftval ( L ‘ 𝑋 ) = { 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ∣ 𝑥 <s 𝑋 }
18 17 a1i ( ( ( ( 𝐴𝐵 ) ⊆ ( O ‘ ( bday 𝑋 ) ) ∧ 𝐴 <<s 𝐵𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥𝐴 ) → ( L ‘ 𝑋 ) = { 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ∣ 𝑥 <s 𝑋 } )
19 18 eleq2d ( ( ( ( 𝐴𝐵 ) ⊆ ( O ‘ ( bday 𝑋 ) ) ∧ 𝐴 <<s 𝐵𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥𝐴 ) → ( 𝑥 ∈ ( L ‘ 𝑋 ) ↔ 𝑥 ∈ { 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ∣ 𝑥 <s 𝑋 } ) )
20 rabid ( 𝑥 ∈ { 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ∣ 𝑥 <s 𝑋 } ↔ ( 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ∧ 𝑥 <s 𝑋 ) )
21 19 20 bitrdi ( ( ( ( 𝐴𝐵 ) ⊆ ( O ‘ ( bday 𝑋 ) ) ∧ 𝐴 <<s 𝐵𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥𝐴 ) → ( 𝑥 ∈ ( L ‘ 𝑋 ) ↔ ( 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ∧ 𝑥 <s 𝑋 ) ) )
22 5 16 21 mpbir2and ( ( ( ( 𝐴𝐵 ) ⊆ ( O ‘ ( bday 𝑋 ) ) ∧ 𝐴 <<s 𝐵𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥𝐴 ) → 𝑥 ∈ ( L ‘ 𝑋 ) )
23 leftssno ( L ‘ 𝑋 ) ⊆ No
24 23 22 sselid ( ( ( ( 𝐴𝐵 ) ⊆ ( O ‘ ( bday 𝑋 ) ) ∧ 𝐴 <<s 𝐵𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥𝐴 ) → 𝑥 No )
25 slerflex ( 𝑥 No 𝑥 ≤s 𝑥 )
26 24 25 syl ( ( ( ( 𝐴𝐵 ) ⊆ ( O ‘ ( bday 𝑋 ) ) ∧ 𝐴 <<s 𝐵𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥𝐴 ) → 𝑥 ≤s 𝑥 )
27 breq2 ( 𝑦 = 𝑥 → ( 𝑥 ≤s 𝑦𝑥 ≤s 𝑥 ) )
28 27 rspcev ( ( 𝑥 ∈ ( L ‘ 𝑋 ) ∧ 𝑥 ≤s 𝑥 ) → ∃ 𝑦 ∈ ( L ‘ 𝑋 ) 𝑥 ≤s 𝑦 )
29 22 26 28 syl2anc ( ( ( ( 𝐴𝐵 ) ⊆ ( O ‘ ( bday 𝑋 ) ) ∧ 𝐴 <<s 𝐵𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥𝐴 ) → ∃ 𝑦 ∈ ( L ‘ 𝑋 ) 𝑥 ≤s 𝑦 )
30 29 ralrimiva ( ( ( 𝐴𝐵 ) ⊆ ( O ‘ ( bday 𝑋 ) ) ∧ 𝐴 <<s 𝐵𝑋 = ( 𝐴 |s 𝐵 ) ) → ∀ 𝑥𝐴𝑦 ∈ ( L ‘ 𝑋 ) 𝑥 ≤s 𝑦 )
31 ssun2 𝐵 ⊆ ( 𝐴𝐵 )
32 sstr ( ( 𝐵 ⊆ ( 𝐴𝐵 ) ∧ ( 𝐴𝐵 ) ⊆ ( O ‘ ( bday 𝑋 ) ) ) → 𝐵 ⊆ ( O ‘ ( bday 𝑋 ) ) )
33 31 32 mpan ( ( 𝐴𝐵 ) ⊆ ( O ‘ ( bday 𝑋 ) ) → 𝐵 ⊆ ( O ‘ ( bday 𝑋 ) ) )
34 33 3ad2ant1 ( ( ( 𝐴𝐵 ) ⊆ ( O ‘ ( bday 𝑋 ) ) ∧ 𝐴 <<s 𝐵𝑋 = ( 𝐴 |s 𝐵 ) ) → 𝐵 ⊆ ( O ‘ ( bday 𝑋 ) ) )
35 34 sselda ( ( ( ( 𝐴𝐵 ) ⊆ ( O ‘ ( bday 𝑋 ) ) ∧ 𝐴 <<s 𝐵𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧𝐵 ) → 𝑧 ∈ ( O ‘ ( bday 𝑋 ) ) )
36 simpl3 ( ( ( ( 𝐴𝐵 ) ⊆ ( O ‘ ( bday 𝑋 ) ) ∧ 𝐴 <<s 𝐵𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧𝐵 ) → 𝑋 = ( 𝐴 |s 𝐵 ) )
37 simpl2 ( ( ( ( 𝐴𝐵 ) ⊆ ( O ‘ ( bday 𝑋 ) ) ∧ 𝐴 <<s 𝐵𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧𝐵 ) → 𝐴 <<s 𝐵 )
38 37 7 syl ( ( ( ( 𝐴𝐵 ) ⊆ ( O ‘ ( bday 𝑋 ) ) ∧ 𝐴 <<s 𝐵𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧𝐵 ) → ( ( 𝐴 |s 𝐵 ) ∈ No 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) )
39 38 simp3d ( ( ( ( 𝐴𝐵 ) ⊆ ( O ‘ ( bday 𝑋 ) ) ∧ 𝐴 <<s 𝐵𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧𝐵 ) → { ( 𝐴 |s 𝐵 ) } <<s 𝐵 )
40 12 a1i ( ( ( ( 𝐴𝐵 ) ⊆ ( O ‘ ( bday 𝑋 ) ) ∧ 𝐴 <<s 𝐵𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧𝐵 ) → ( 𝐴 |s 𝐵 ) ∈ { ( 𝐴 |s 𝐵 ) } )
41 simpr ( ( ( ( 𝐴𝐵 ) ⊆ ( O ‘ ( bday 𝑋 ) ) ∧ 𝐴 <<s 𝐵𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧𝐵 ) → 𝑧𝐵 )
42 39 40 41 ssltsepcd ( ( ( ( 𝐴𝐵 ) ⊆ ( O ‘ ( bday 𝑋 ) ) ∧ 𝐴 <<s 𝐵𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧𝐵 ) → ( 𝐴 |s 𝐵 ) <s 𝑧 )
43 36 42 eqbrtrd ( ( ( ( 𝐴𝐵 ) ⊆ ( O ‘ ( bday 𝑋 ) ) ∧ 𝐴 <<s 𝐵𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧𝐵 ) → 𝑋 <s 𝑧 )
44 rightval ( R ‘ 𝑋 ) = { 𝑧 ∈ ( O ‘ ( bday 𝑋 ) ) ∣ 𝑋 <s 𝑧 }
45 44 a1i ( ( ( ( 𝐴𝐵 ) ⊆ ( O ‘ ( bday 𝑋 ) ) ∧ 𝐴 <<s 𝐵𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧𝐵 ) → ( R ‘ 𝑋 ) = { 𝑧 ∈ ( O ‘ ( bday 𝑋 ) ) ∣ 𝑋 <s 𝑧 } )
46 45 eleq2d ( ( ( ( 𝐴𝐵 ) ⊆ ( O ‘ ( bday 𝑋 ) ) ∧ 𝐴 <<s 𝐵𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧𝐵 ) → ( 𝑧 ∈ ( R ‘ 𝑋 ) ↔ 𝑧 ∈ { 𝑧 ∈ ( O ‘ ( bday 𝑋 ) ) ∣ 𝑋 <s 𝑧 } ) )
47 rabid ( 𝑧 ∈ { 𝑧 ∈ ( O ‘ ( bday 𝑋 ) ) ∣ 𝑋 <s 𝑧 } ↔ ( 𝑧 ∈ ( O ‘ ( bday 𝑋 ) ) ∧ 𝑋 <s 𝑧 ) )
48 46 47 bitrdi ( ( ( ( 𝐴𝐵 ) ⊆ ( O ‘ ( bday 𝑋 ) ) ∧ 𝐴 <<s 𝐵𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧𝐵 ) → ( 𝑧 ∈ ( R ‘ 𝑋 ) ↔ ( 𝑧 ∈ ( O ‘ ( bday 𝑋 ) ) ∧ 𝑋 <s 𝑧 ) ) )
49 35 43 48 mpbir2and ( ( ( ( 𝐴𝐵 ) ⊆ ( O ‘ ( bday 𝑋 ) ) ∧ 𝐴 <<s 𝐵𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧𝐵 ) → 𝑧 ∈ ( R ‘ 𝑋 ) )
50 rightssno ( R ‘ 𝑋 ) ⊆ No
51 50 49 sselid ( ( ( ( 𝐴𝐵 ) ⊆ ( O ‘ ( bday 𝑋 ) ) ∧ 𝐴 <<s 𝐵𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧𝐵 ) → 𝑧 No )
52 slerflex ( 𝑧 No 𝑧 ≤s 𝑧 )
53 51 52 syl ( ( ( ( 𝐴𝐵 ) ⊆ ( O ‘ ( bday 𝑋 ) ) ∧ 𝐴 <<s 𝐵𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧𝐵 ) → 𝑧 ≤s 𝑧 )
54 breq1 ( 𝑤 = 𝑧 → ( 𝑤 ≤s 𝑧𝑧 ≤s 𝑧 ) )
55 54 rspcev ( ( 𝑧 ∈ ( R ‘ 𝑋 ) ∧ 𝑧 ≤s 𝑧 ) → ∃ 𝑤 ∈ ( R ‘ 𝑋 ) 𝑤 ≤s 𝑧 )
56 49 53 55 syl2anc ( ( ( ( 𝐴𝐵 ) ⊆ ( O ‘ ( bday 𝑋 ) ) ∧ 𝐴 <<s 𝐵𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧𝐵 ) → ∃ 𝑤 ∈ ( R ‘ 𝑋 ) 𝑤 ≤s 𝑧 )
57 56 ralrimiva ( ( ( 𝐴𝐵 ) ⊆ ( O ‘ ( bday 𝑋 ) ) ∧ 𝐴 <<s 𝐵𝑋 = ( 𝐴 |s 𝐵 ) ) → ∀ 𝑧𝐵𝑤 ∈ ( R ‘ 𝑋 ) 𝑤 ≤s 𝑧 )
58 30 57 jca ( ( ( 𝐴𝐵 ) ⊆ ( O ‘ ( bday 𝑋 ) ) ∧ 𝐴 <<s 𝐵𝑋 = ( 𝐴 |s 𝐵 ) ) → ( ∀ 𝑥𝐴𝑦 ∈ ( L ‘ 𝑋 ) 𝑥 ≤s 𝑦 ∧ ∀ 𝑧𝐵𝑤 ∈ ( R ‘ 𝑋 ) 𝑤 ≤s 𝑧 ) )