Step |
Hyp |
Ref |
Expression |
1 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) |
2 |
|
sstr |
⊢ ( ( 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ) → 𝐴 ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ) |
3 |
1 2
|
mpan |
⊢ ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) → 𝐴 ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ) |
4 |
3
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) → 𝐴 ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ) |
5 |
4
|
sselda |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ) |
6 |
|
simpl2 |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝐴 <<s 𝐵 ) |
7 |
|
scutcut |
⊢ ( 𝐴 <<s 𝐵 → ( ( 𝐴 |s 𝐵 ) ∈ No ∧ 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) ) |
8 |
6 7
|
syl |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐴 |s 𝐵 ) ∈ No ∧ 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) ) |
9 |
8
|
simp2d |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ) |
10 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
11 |
|
ovex |
⊢ ( 𝐴 |s 𝐵 ) ∈ V |
12 |
11
|
snid |
⊢ ( 𝐴 |s 𝐵 ) ∈ { ( 𝐴 |s 𝐵 ) } |
13 |
12
|
a1i |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐴 |s 𝐵 ) ∈ { ( 𝐴 |s 𝐵 ) } ) |
14 |
9 10 13
|
ssltsepcd |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 <s ( 𝐴 |s 𝐵 ) ) |
15 |
|
simpl3 |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑋 = ( 𝐴 |s 𝐵 ) ) |
16 |
14 15
|
breqtrrd |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 <s 𝑋 ) |
17 |
|
leftval |
⊢ ( L ‘ 𝑋 ) = { 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑥 <s 𝑋 } |
18 |
17
|
a1i |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( L ‘ 𝑋 ) = { 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑥 <s 𝑋 } ) |
19 |
18
|
eleq2d |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ ( L ‘ 𝑋 ) ↔ 𝑥 ∈ { 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑥 <s 𝑋 } ) ) |
20 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑥 <s 𝑋 } ↔ ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝑥 <s 𝑋 ) ) |
21 |
19 20
|
bitrdi |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ ( L ‘ 𝑋 ) ↔ ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝑥 <s 𝑋 ) ) ) |
22 |
5 16 21
|
mpbir2and |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ( L ‘ 𝑋 ) ) |
23 |
|
leftssno |
⊢ ( L ‘ 𝑋 ) ⊆ No |
24 |
23 22
|
sselid |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ No ) |
25 |
|
slerflex |
⊢ ( 𝑥 ∈ No → 𝑥 ≤s 𝑥 ) |
26 |
24 25
|
syl |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≤s 𝑥 ) |
27 |
|
breq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝑥 ≤s 𝑦 ↔ 𝑥 ≤s 𝑥 ) ) |
28 |
27
|
rspcev |
⊢ ( ( 𝑥 ∈ ( L ‘ 𝑋 ) ∧ 𝑥 ≤s 𝑥 ) → ∃ 𝑦 ∈ ( L ‘ 𝑋 ) 𝑥 ≤s 𝑦 ) |
29 |
22 26 28
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ ( L ‘ 𝑋 ) 𝑥 ≤s 𝑦 ) |
30 |
29
|
ralrimiva |
⊢ ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ( L ‘ 𝑋 ) 𝑥 ≤s 𝑦 ) |
31 |
|
ssun2 |
⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) |
32 |
|
sstr |
⊢ ( ( 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ) → 𝐵 ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ) |
33 |
31 32
|
mpan |
⊢ ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) → 𝐵 ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ) |
34 |
33
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) → 𝐵 ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ) |
35 |
34
|
sselda |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ) |
36 |
|
simpl3 |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → 𝑋 = ( 𝐴 |s 𝐵 ) ) |
37 |
|
simpl2 |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → 𝐴 <<s 𝐵 ) |
38 |
37 7
|
syl |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝐴 |s 𝐵 ) ∈ No ∧ 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) ) |
39 |
38
|
simp3d |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) |
40 |
12
|
a1i |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝐴 |s 𝐵 ) ∈ { ( 𝐴 |s 𝐵 ) } ) |
41 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ 𝐵 ) |
42 |
39 40 41
|
ssltsepcd |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝐴 |s 𝐵 ) <s 𝑧 ) |
43 |
36 42
|
eqbrtrd |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → 𝑋 <s 𝑧 ) |
44 |
|
rightval |
⊢ ( R ‘ 𝑋 ) = { 𝑧 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑋 <s 𝑧 } |
45 |
44
|
a1i |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( R ‘ 𝑋 ) = { 𝑧 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑋 <s 𝑧 } ) |
46 |
45
|
eleq2d |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 ∈ ( R ‘ 𝑋 ) ↔ 𝑧 ∈ { 𝑧 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑋 <s 𝑧 } ) ) |
47 |
|
rabid |
⊢ ( 𝑧 ∈ { 𝑧 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑋 <s 𝑧 } ↔ ( 𝑧 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝑋 <s 𝑧 ) ) |
48 |
46 47
|
bitrdi |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑧 ∈ ( R ‘ 𝑋 ) ↔ ( 𝑧 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝑋 <s 𝑧 ) ) ) |
49 |
35 43 48
|
mpbir2and |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ ( R ‘ 𝑋 ) ) |
50 |
|
rightssno |
⊢ ( R ‘ 𝑋 ) ⊆ No |
51 |
50 49
|
sselid |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ No ) |
52 |
|
slerflex |
⊢ ( 𝑧 ∈ No → 𝑧 ≤s 𝑧 ) |
53 |
51 52
|
syl |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ≤s 𝑧 ) |
54 |
|
breq1 |
⊢ ( 𝑤 = 𝑧 → ( 𝑤 ≤s 𝑧 ↔ 𝑧 ≤s 𝑧 ) ) |
55 |
54
|
rspcev |
⊢ ( ( 𝑧 ∈ ( R ‘ 𝑋 ) ∧ 𝑧 ≤s 𝑧 ) → ∃ 𝑤 ∈ ( R ‘ 𝑋 ) 𝑤 ≤s 𝑧 ) |
56 |
49 53 55
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ 𝐵 ) → ∃ 𝑤 ∈ ( R ‘ 𝑋 ) 𝑤 ≤s 𝑧 ) |
57 |
56
|
ralrimiva |
⊢ ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) → ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ ( R ‘ 𝑋 ) 𝑤 ≤s 𝑧 ) |
58 |
30 57
|
jca |
⊢ ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ( L ‘ 𝑋 ) 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ ( R ‘ 𝑋 ) 𝑤 ≤s 𝑧 ) ) |