Step |
Hyp |
Ref |
Expression |
1 |
|
bdayelon |
|- ( bday ` ( A |s B ) ) e. On |
2 |
1
|
onssneli |
|- ( ( bday ` ( A |s B ) ) C_ ( bday ` x ) -> -. ( bday ` x ) e. ( bday ` ( A |s B ) ) ) |
3 |
|
leftssold |
|- ( _L ` X ) C_ ( _Old ` ( bday ` X ) ) |
4 |
3
|
a1i |
|- ( ( A < ( _L ` X ) C_ ( _Old ` ( bday ` X ) ) ) |
5 |
4
|
sselda |
|- ( ( ( A < x e. ( _Old ` ( bday ` X ) ) ) |
6 |
|
bdayelon |
|- ( bday ` X ) e. On |
7 |
|
leftssno |
|- ( _L ` X ) C_ No |
8 |
7
|
a1i |
|- ( ( A < ( _L ` X ) C_ No ) |
9 |
8
|
sselda |
|- ( ( ( A < x e. No ) |
10 |
|
oldbday |
|- ( ( ( bday ` X ) e. On /\ x e. No ) -> ( x e. ( _Old ` ( bday ` X ) ) <-> ( bday ` x ) e. ( bday ` X ) ) ) |
11 |
6 9 10
|
sylancr |
|- ( ( ( A < ( x e. ( _Old ` ( bday ` X ) ) <-> ( bday ` x ) e. ( bday ` X ) ) ) |
12 |
5 11
|
mpbid |
|- ( ( ( A < ( bday ` x ) e. ( bday ` X ) ) |
13 |
|
simplr |
|- ( ( ( A < X = ( A |s B ) ) |
14 |
13
|
fveq2d |
|- ( ( ( A < ( bday ` X ) = ( bday ` ( A |s B ) ) ) |
15 |
12 14
|
eleqtrd |
|- ( ( ( A < ( bday ` x ) e. ( bday ` ( A |s B ) ) ) |
16 |
2 15
|
nsyl3 |
|- ( ( ( A < -. ( bday ` ( A |s B ) ) C_ ( bday ` x ) ) |
17 |
|
scutbday |
|- ( A < ( bday ` ( A |s B ) ) = |^| ( bday " { t e. No | ( A < |
18 |
17
|
ad3antrrr |
|- ( ( ( ( A < ( bday ` ( A |s B ) ) = |^| ( bday " { t e. No | ( A < |
19 |
|
bdayfn |
|- bday Fn No |
20 |
|
ssrab2 |
|- { t e. No | ( A < |
21 |
|
sneq |
|- ( t = x -> { t } = { x } ) |
22 |
21
|
breq2d |
|- ( t = x -> ( A < A < |
23 |
21
|
breq1d |
|- ( t = x -> ( { t } < { x } < |
24 |
22 23
|
anbi12d |
|- ( t = x -> ( ( A < ( A < |
25 |
9
|
adantr |
|- ( ( ( ( A < x e. No ) |
26 |
|
snex |
|- { x } e. _V |
27 |
26
|
a1i |
|- ( ( ( A < { x } e. _V ) |
28 |
|
ssltex2 |
|- ( A < B e. _V ) |
29 |
28
|
ad2antrr |
|- ( ( ( A < B e. _V ) |
30 |
9
|
snssd |
|- ( ( ( A < { x } C_ No ) |
31 |
|
ssltss2 |
|- ( A < B C_ No ) |
32 |
31
|
ad2antrr |
|- ( ( ( A < B C_ No ) |
33 |
9
|
adantr |
|- ( ( ( ( A < x e. No ) |
34 |
|
simpr |
|- ( ( A < X = ( A |s B ) ) |
35 |
|
simpl |
|- ( ( A < A < |
36 |
35
|
scutcld |
|- ( ( A < ( A |s B ) e. No ) |
37 |
34 36
|
eqeltrd |
|- ( ( A < X e. No ) |
38 |
37
|
ad2antrr |
|- ( ( ( ( A < X e. No ) |
39 |
32
|
sselda |
|- ( ( ( ( A < b e. No ) |
40 |
|
leftval |
|- ( _L ` X ) = { x e. ( _Old ` ( bday ` X ) ) | x |
41 |
40
|
a1i |
|- ( ( A < ( _L ` X ) = { x e. ( _Old ` ( bday ` X ) ) | x |
42 |
41
|
eleq2d |
|- ( ( A < ( x e. ( _L ` X ) <-> x e. { x e. ( _Old ` ( bday ` X ) ) | x |
43 |
|
rabid |
|- ( x e. { x e. ( _Old ` ( bday ` X ) ) | x ( x e. ( _Old ` ( bday ` X ) ) /\ x |
44 |
42 43
|
bitrdi |
|- ( ( A < ( x e. ( _L ` X ) <-> ( x e. ( _Old ` ( bday ` X ) ) /\ x |
45 |
44
|
simplbda |
|- ( ( ( A < x |
46 |
45
|
adantr |
|- ( ( ( ( A < x |
47 |
|
simpllr |
|- ( ( ( ( A < X = ( A |s B ) ) |
48 |
|
scutcut |
|- ( A < ( ( A |s B ) e. No /\ A < |
49 |
48
|
ad2antrr |
|- ( ( ( A < ( ( A |s B ) e. No /\ A < |
50 |
49
|
simp3d |
|- ( ( ( A < { ( A |s B ) } < |
51 |
|
ovex |
|- ( A |s B ) e. _V |
52 |
51
|
snid |
|- ( A |s B ) e. { ( A |s B ) } |
53 |
|
ssltsepc |
|- ( ( { ( A |s B ) } < ( A |s B ) |
54 |
52 53
|
mp3an2 |
|- ( ( { ( A |s B ) } < ( A |s B ) |
55 |
50 54
|
sylan |
|- ( ( ( ( A < ( A |s B ) |
56 |
47 55
|
eqbrtrd |
|- ( ( ( ( A < X |
57 |
33 38 39 46 56
|
slttrd |
|- ( ( ( ( A < x |
58 |
57
|
3adant2 |
|- ( ( ( ( A < x |
59 |
|
velsn |
|- ( a e. { x } <-> a = x ) |
60 |
|
breq1 |
|- ( a = x -> ( a x |
61 |
59 60
|
sylbi |
|- ( a e. { x } -> ( a x |
62 |
61
|
3ad2ant2 |
|- ( ( ( ( A < ( a x |
63 |
58 62
|
mpbird |
|- ( ( ( ( A < a |
64 |
27 29 30 32 63
|
ssltd |
|- ( ( ( A < { x } < |
65 |
64
|
anim1ci |
|- ( ( ( ( A < ( A < |
66 |
24 25 65
|
elrabd |
|- ( ( ( ( A < x e. { t e. No | ( A < |
67 |
|
fnfvima |
|- ( ( bday Fn No /\ { t e. No | ( A < ( bday ` x ) e. ( bday " { t e. No | ( A < |
68 |
19 20 66 67
|
mp3an12i |
|- ( ( ( ( A < ( bday ` x ) e. ( bday " { t e. No | ( A < |
69 |
|
intss1 |
|- ( ( bday ` x ) e. ( bday " { t e. No | ( A < |^| ( bday " { t e. No | ( A < |
70 |
68 69
|
syl |
|- ( ( ( ( A < |^| ( bday " { t e. No | ( A < |
71 |
18 70
|
eqsstrd |
|- ( ( ( ( A < ( bday ` ( A |s B ) ) C_ ( bday ` x ) ) |
72 |
16 71
|
mtand |
|- ( ( ( A < -. A < |
73 |
|
ssltex1 |
|- ( A < A e. _V ) |
74 |
73
|
ad3antrrr |
|- ( ( ( ( A < A e. _V ) |
75 |
74 26
|
jctir |
|- ( ( ( ( A < ( A e. _V /\ { x } e. _V ) ) |
76 |
|
ssltss1 |
|- ( A < A C_ No ) |
77 |
76
|
ad3antrrr |
|- ( ( ( ( A < A C_ No ) |
78 |
9
|
adantr |
|- ( ( ( ( A < x e. No ) |
79 |
78
|
snssd |
|- ( ( ( ( A < { x } C_ No ) |
80 |
|
simpr |
|- ( ( ( ( A < A. y e. A A. t e. { x } y |
81 |
77 79 80
|
3jca |
|- ( ( ( ( A < ( A C_ No /\ { x } C_ No /\ A. y e. A A. t e. { x } y |
82 |
|
brsslt |
|- ( A < ( ( A e. _V /\ { x } e. _V ) /\ ( A C_ No /\ { x } C_ No /\ A. y e. A A. t e. { x } y |
83 |
75 81 82
|
sylanbrc |
|- ( ( ( ( A < A < |
84 |
72 83
|
mtand |
|- ( ( ( A < -. A. y e. A A. t e. { x } y |
85 |
|
rexnal |
|- ( E. t e. { x } -. A. y e. A y -. A. t e. { x } A. y e. A y |
86 |
|
ralcom |
|- ( A. t e. { x } A. y e. A y A. y e. A A. t e. { x } y |
87 |
85 86
|
xchbinx |
|- ( E. t e. { x } -. A. y e. A y -. A. y e. A A. t e. { x } y |
88 |
84 87
|
sylibr |
|- ( ( ( A < E. t e. { x } -. A. y e. A y |
89 |
|
vex |
|- x e. _V |
90 |
|
breq2 |
|- ( t = x -> ( y y |
91 |
90
|
ralbidv |
|- ( t = x -> ( A. y e. A y A. y e. A y |
92 |
91
|
notbid |
|- ( t = x -> ( -. A. y e. A y -. A. y e. A y |
93 |
89 92
|
rexsn |
|- ( E. t e. { x } -. A. y e. A y -. A. y e. A y |
94 |
88 93
|
sylib |
|- ( ( ( A < -. A. y e. A y |
95 |
76
|
ad2antrr |
|- ( ( ( A < A C_ No ) |
96 |
95
|
sselda |
|- ( ( ( ( A < y e. No ) |
97 |
|
slenlt |
|- ( ( x e. No /\ y e. No ) -> ( x <_s y <-> -. y |
98 |
9 96 97
|
syl2an2r |
|- ( ( ( ( A < ( x <_s y <-> -. y |
99 |
98
|
rexbidva |
|- ( ( ( A < ( E. y e. A x <_s y <-> E. y e. A -. y |
100 |
|
rexnal |
|- ( E. y e. A -. y -. A. y e. A y |
101 |
99 100
|
bitrdi |
|- ( ( ( A < ( E. y e. A x <_s y <-> -. A. y e. A y |
102 |
94 101
|
mpbird |
|- ( ( ( A < E. y e. A x <_s y ) |
103 |
102
|
ralrimiva |
|- ( ( A < A. x e. ( _L ` X ) E. y e. A x <_s y ) |
104 |
1
|
onssneli |
|- ( ( bday ` ( A |s B ) ) C_ ( bday ` z ) -> -. ( bday ` z ) e. ( bday ` ( A |s B ) ) ) |
105 |
|
rightssold |
|- ( _R ` X ) C_ ( _Old ` ( bday ` X ) ) |
106 |
105
|
a1i |
|- ( ( A < ( _R ` X ) C_ ( _Old ` ( bday ` X ) ) ) |
107 |
106
|
sselda |
|- ( ( ( A < z e. ( _Old ` ( bday ` X ) ) ) |
108 |
|
rightssno |
|- ( _R ` X ) C_ No |
109 |
108
|
a1i |
|- ( ( A < ( _R ` X ) C_ No ) |
110 |
109
|
sselda |
|- ( ( ( A < z e. No ) |
111 |
|
oldbday |
|- ( ( ( bday ` X ) e. On /\ z e. No ) -> ( z e. ( _Old ` ( bday ` X ) ) <-> ( bday ` z ) e. ( bday ` X ) ) ) |
112 |
6 110 111
|
sylancr |
|- ( ( ( A < ( z e. ( _Old ` ( bday ` X ) ) <-> ( bday ` z ) e. ( bday ` X ) ) ) |
113 |
107 112
|
mpbid |
|- ( ( ( A < ( bday ` z ) e. ( bday ` X ) ) |
114 |
|
simplr |
|- ( ( ( A < X = ( A |s B ) ) |
115 |
114
|
fveq2d |
|- ( ( ( A < ( bday ` X ) = ( bday ` ( A |s B ) ) ) |
116 |
113 115
|
eleqtrd |
|- ( ( ( A < ( bday ` z ) e. ( bday ` ( A |s B ) ) ) |
117 |
104 116
|
nsyl3 |
|- ( ( ( A < -. ( bday ` ( A |s B ) ) C_ ( bday ` z ) ) |
118 |
17
|
ad3antrrr |
|- ( ( ( ( A < ( bday ` ( A |s B ) ) = |^| ( bday " { t e. No | ( A < |
119 |
|
sneq |
|- ( t = z -> { t } = { z } ) |
120 |
119
|
breq2d |
|- ( t = z -> ( A < A < |
121 |
119
|
breq1d |
|- ( t = z -> ( { t } < { z } < |
122 |
120 121
|
anbi12d |
|- ( t = z -> ( ( A < ( A < |
123 |
110
|
adantr |
|- ( ( ( ( A < z e. No ) |
124 |
73
|
ad2antrr |
|- ( ( ( A < A e. _V ) |
125 |
|
snex |
|- { z } e. _V |
126 |
125
|
a1i |
|- ( ( ( A < { z } e. _V ) |
127 |
76
|
ad2antrr |
|- ( ( ( A < A C_ No ) |
128 |
110
|
snssd |
|- ( ( ( A < { z } C_ No ) |
129 |
127
|
sselda |
|- ( ( ( ( A < a e. No ) |
130 |
37
|
ad2antrr |
|- ( ( ( ( A < X e. No ) |
131 |
110
|
adantr |
|- ( ( ( ( A < z e. No ) |
132 |
48
|
ad2antrr |
|- ( ( ( A < ( ( A |s B ) e. No /\ A < |
133 |
132
|
simp2d |
|- ( ( ( A < A < |
134 |
|
ssltsepc |
|- ( ( A < a |
135 |
52 134
|
mp3an3 |
|- ( ( A < a |
136 |
133 135
|
sylan |
|- ( ( ( ( A < a |
137 |
|
simpllr |
|- ( ( ( ( A < X = ( A |s B ) ) |
138 |
136 137
|
breqtrrd |
|- ( ( ( ( A < a |
139 |
|
rightval |
|- ( _R ` X ) = { z e. ( _Old ` ( bday ` X ) ) | X |
140 |
139
|
a1i |
|- ( ( A < ( _R ` X ) = { z e. ( _Old ` ( bday ` X ) ) | X |
141 |
140
|
eleq2d |
|- ( ( A < ( z e. ( _R ` X ) <-> z e. { z e. ( _Old ` ( bday ` X ) ) | X |
142 |
|
rabid |
|- ( z e. { z e. ( _Old ` ( bday ` X ) ) | X ( z e. ( _Old ` ( bday ` X ) ) /\ X |
143 |
141 142
|
bitrdi |
|- ( ( A < ( z e. ( _R ` X ) <-> ( z e. ( _Old ` ( bday ` X ) ) /\ X |
144 |
143
|
simplbda |
|- ( ( ( A < X |
145 |
144
|
adantr |
|- ( ( ( ( A < X |
146 |
129 130 131 138 145
|
slttrd |
|- ( ( ( ( A < a |
147 |
146
|
3adant3 |
|- ( ( ( ( A < a |
148 |
|
velsn |
|- ( b e. { z } <-> b = z ) |
149 |
|
breq2 |
|- ( b = z -> ( a a |
150 |
148 149
|
sylbi |
|- ( b e. { z } -> ( a a |
151 |
150
|
3ad2ant3 |
|- ( ( ( ( A < ( a a |
152 |
147 151
|
mpbird |
|- ( ( ( ( A < a |
153 |
124 126 127 128 152
|
ssltd |
|- ( ( ( A < A < |
154 |
153
|
anim1i |
|- ( ( ( ( A < ( A < |
155 |
122 123 154
|
elrabd |
|- ( ( ( ( A < z e. { t e. No | ( A < |
156 |
|
fnfvima |
|- ( ( bday Fn No /\ { t e. No | ( A < ( bday ` z ) e. ( bday " { t e. No | ( A < |
157 |
19 20 155 156
|
mp3an12i |
|- ( ( ( ( A < ( bday ` z ) e. ( bday " { t e. No | ( A < |
158 |
|
intss1 |
|- ( ( bday ` z ) e. ( bday " { t e. No | ( A < |^| ( bday " { t e. No | ( A < |
159 |
157 158
|
syl |
|- ( ( ( ( A < |^| ( bday " { t e. No | ( A < |
160 |
118 159
|
eqsstrd |
|- ( ( ( ( A < ( bday ` ( A |s B ) ) C_ ( bday ` z ) ) |
161 |
117 160
|
mtand |
|- ( ( ( A < -. { z } < |
162 |
28
|
ad3antrrr |
|- ( ( ( ( A < B e. _V ) |
163 |
162 125
|
jctil |
|- ( ( ( ( A < ( { z } e. _V /\ B e. _V ) ) |
164 |
128
|
adantr |
|- ( ( ( ( A < { z } C_ No ) |
165 |
31
|
ad3antrrr |
|- ( ( ( ( A < B C_ No ) |
166 |
|
simpr |
|- ( ( ( ( A < A. t e. { z } A. w e. B t |
167 |
164 165 166
|
3jca |
|- ( ( ( ( A < ( { z } C_ No /\ B C_ No /\ A. t e. { z } A. w e. B t |
168 |
|
brsslt |
|- ( { z } < ( ( { z } e. _V /\ B e. _V ) /\ ( { z } C_ No /\ B C_ No /\ A. t e. { z } A. w e. B t |
169 |
163 167 168
|
sylanbrc |
|- ( ( ( ( A < { z } < |
170 |
161 169
|
mtand |
|- ( ( ( A < -. A. t e. { z } A. w e. B t |
171 |
|
rexnal |
|- ( E. t e. { z } -. A. w e. B t -. A. t e. { z } A. w e. B t |
172 |
170 171
|
sylibr |
|- ( ( ( A < E. t e. { z } -. A. w e. B t |
173 |
|
vex |
|- z e. _V |
174 |
|
breq1 |
|- ( t = z -> ( t z |
175 |
174
|
ralbidv |
|- ( t = z -> ( A. w e. B t A. w e. B z |
176 |
175
|
notbid |
|- ( t = z -> ( -. A. w e. B t -. A. w e. B z |
177 |
173 176
|
rexsn |
|- ( E. t e. { z } -. A. w e. B t -. A. w e. B z |
178 |
172 177
|
sylib |
|- ( ( ( A < -. A. w e. B z |
179 |
31
|
ad2antrr |
|- ( ( ( A < B C_ No ) |
180 |
179
|
sselda |
|- ( ( ( ( A < w e. No ) |
181 |
110
|
adantr |
|- ( ( ( ( A < z e. No ) |
182 |
|
slenlt |
|- ( ( w e. No /\ z e. No ) -> ( w <_s z <-> -. z |
183 |
180 181 182
|
syl2anc |
|- ( ( ( ( A < ( w <_s z <-> -. z |
184 |
183
|
rexbidva |
|- ( ( ( A < ( E. w e. B w <_s z <-> E. w e. B -. z |
185 |
|
rexnal |
|- ( E. w e. B -. z -. A. w e. B z |
186 |
184 185
|
bitrdi |
|- ( ( ( A < ( E. w e. B w <_s z <-> -. A. w e. B z |
187 |
178 186
|
mpbird |
|- ( ( ( A < E. w e. B w <_s z ) |
188 |
187
|
ralrimiva |
|- ( ( A < A. z e. ( _R ` X ) E. w e. B w <_s z ) |
189 |
103 188
|
jca |
|- ( ( A < ( A. x e. ( _L ` X ) E. y e. A x <_s y /\ A. z e. ( _R ` X ) E. w e. B w <_s z ) ) |