Step |
Hyp |
Ref |
Expression |
1 |
|
bdayelon |
⊢ ( bday ‘ ( 𝐴 |s 𝐵 ) ) ∈ On |
2 |
1
|
onssneli |
⊢ ( ( bday ‘ ( 𝐴 |s 𝐵 ) ) ⊆ ( bday ‘ 𝑥 ) → ¬ ( bday ‘ 𝑥 ) ∈ ( bday ‘ ( 𝐴 |s 𝐵 ) ) ) |
3 |
|
leftssold |
⊢ ( L ‘ 𝑋 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) |
4 |
3
|
a1i |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) → ( L ‘ 𝑋 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ) |
5 |
4
|
sselda |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) → 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ) |
6 |
|
bdayelon |
⊢ ( bday ‘ 𝑋 ) ∈ On |
7 |
|
leftssno |
⊢ ( L ‘ 𝑋 ) ⊆ No |
8 |
7
|
a1i |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) → ( L ‘ 𝑋 ) ⊆ No ) |
9 |
8
|
sselda |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) → 𝑥 ∈ No ) |
10 |
|
oldbday |
⊢ ( ( ( bday ‘ 𝑋 ) ∈ On ∧ 𝑥 ∈ No ) → ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ↔ ( bday ‘ 𝑥 ) ∈ ( bday ‘ 𝑋 ) ) ) |
11 |
6 9 10
|
sylancr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) → ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ↔ ( bday ‘ 𝑥 ) ∈ ( bday ‘ 𝑋 ) ) ) |
12 |
5 11
|
mpbid |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) → ( bday ‘ 𝑥 ) ∈ ( bday ‘ 𝑋 ) ) |
13 |
|
simplr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) → 𝑋 = ( 𝐴 |s 𝐵 ) ) |
14 |
13
|
fveq2d |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) → ( bday ‘ 𝑋 ) = ( bday ‘ ( 𝐴 |s 𝐵 ) ) ) |
15 |
12 14
|
eleqtrd |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) → ( bday ‘ 𝑥 ) ∈ ( bday ‘ ( 𝐴 |s 𝐵 ) ) ) |
16 |
2 15
|
nsyl3 |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) → ¬ ( bday ‘ ( 𝐴 |s 𝐵 ) ) ⊆ ( bday ‘ 𝑥 ) ) |
17 |
|
scutbday |
⊢ ( 𝐴 <<s 𝐵 → ( bday ‘ ( 𝐴 |s 𝐵 ) ) = ∩ ( bday “ { 𝑡 ∈ No ∣ ( 𝐴 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐵 ) } ) ) |
18 |
17
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) ∧ 𝐴 <<s { 𝑥 } ) → ( bday ‘ ( 𝐴 |s 𝐵 ) ) = ∩ ( bday “ { 𝑡 ∈ No ∣ ( 𝐴 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐵 ) } ) ) |
19 |
|
bdayfn |
⊢ bday Fn No |
20 |
|
ssrab2 |
⊢ { 𝑡 ∈ No ∣ ( 𝐴 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐵 ) } ⊆ No |
21 |
|
sneq |
⊢ ( 𝑡 = 𝑥 → { 𝑡 } = { 𝑥 } ) |
22 |
21
|
breq2d |
⊢ ( 𝑡 = 𝑥 → ( 𝐴 <<s { 𝑡 } ↔ 𝐴 <<s { 𝑥 } ) ) |
23 |
21
|
breq1d |
⊢ ( 𝑡 = 𝑥 → ( { 𝑡 } <<s 𝐵 ↔ { 𝑥 } <<s 𝐵 ) ) |
24 |
22 23
|
anbi12d |
⊢ ( 𝑡 = 𝑥 → ( ( 𝐴 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐵 ) ↔ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) ) ) |
25 |
9
|
adantr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) ∧ 𝐴 <<s { 𝑥 } ) → 𝑥 ∈ No ) |
26 |
|
snex |
⊢ { 𝑥 } ∈ V |
27 |
26
|
a1i |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) → { 𝑥 } ∈ V ) |
28 |
|
ssltex2 |
⊢ ( 𝐴 <<s 𝐵 → 𝐵 ∈ V ) |
29 |
28
|
ad2antrr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) → 𝐵 ∈ V ) |
30 |
9
|
snssd |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) → { 𝑥 } ⊆ No ) |
31 |
|
ssltss2 |
⊢ ( 𝐴 <<s 𝐵 → 𝐵 ⊆ No ) |
32 |
31
|
ad2antrr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) → 𝐵 ⊆ No ) |
33 |
9
|
adantr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝑥 ∈ No ) |
34 |
|
simpr |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) → 𝑋 = ( 𝐴 |s 𝐵 ) ) |
35 |
|
simpl |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) → 𝐴 <<s 𝐵 ) |
36 |
35
|
scutcld |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) → ( 𝐴 |s 𝐵 ) ∈ No ) |
37 |
34 36
|
eqeltrd |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) → 𝑋 ∈ No ) |
38 |
37
|
ad2antrr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝑋 ∈ No ) |
39 |
32
|
sselda |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ No ) |
40 |
|
leftval |
⊢ ( L ‘ 𝑋 ) = { 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑥 <s 𝑋 } |
41 |
40
|
a1i |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) → ( L ‘ 𝑋 ) = { 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑥 <s 𝑋 } ) |
42 |
41
|
eleq2d |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) → ( 𝑥 ∈ ( L ‘ 𝑋 ) ↔ 𝑥 ∈ { 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑥 <s 𝑋 } ) ) |
43 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑥 <s 𝑋 } ↔ ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝑥 <s 𝑋 ) ) |
44 |
42 43
|
bitrdi |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) → ( 𝑥 ∈ ( L ‘ 𝑋 ) ↔ ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝑥 <s 𝑋 ) ) ) |
45 |
44
|
simplbda |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) → 𝑥 <s 𝑋 ) |
46 |
45
|
adantr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝑥 <s 𝑋 ) |
47 |
|
simpllr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝑋 = ( 𝐴 |s 𝐵 ) ) |
48 |
|
scutcut |
⊢ ( 𝐴 <<s 𝐵 → ( ( 𝐴 |s 𝐵 ) ∈ No ∧ 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) ) |
49 |
48
|
ad2antrr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) → ( ( 𝐴 |s 𝐵 ) ∈ No ∧ 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) ) |
50 |
49
|
simp3d |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) → { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) |
51 |
|
ovex |
⊢ ( 𝐴 |s 𝐵 ) ∈ V |
52 |
51
|
snid |
⊢ ( 𝐴 |s 𝐵 ) ∈ { ( 𝐴 |s 𝐵 ) } |
53 |
|
ssltsepc |
⊢ ( ( { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ∧ ( 𝐴 |s 𝐵 ) ∈ { ( 𝐴 |s 𝐵 ) } ∧ 𝑏 ∈ 𝐵 ) → ( 𝐴 |s 𝐵 ) <s 𝑏 ) |
54 |
52 53
|
mp3an2 |
⊢ ( ( { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐴 |s 𝐵 ) <s 𝑏 ) |
55 |
50 54
|
sylan |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝐴 |s 𝐵 ) <s 𝑏 ) |
56 |
47 55
|
eqbrtrd |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝑋 <s 𝑏 ) |
57 |
33 38 39 46 56
|
slttrd |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝑥 <s 𝑏 ) |
58 |
57
|
3adant2 |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) ∧ 𝑎 ∈ { 𝑥 } ∧ 𝑏 ∈ 𝐵 ) → 𝑥 <s 𝑏 ) |
59 |
|
velsn |
⊢ ( 𝑎 ∈ { 𝑥 } ↔ 𝑎 = 𝑥 ) |
60 |
|
breq1 |
⊢ ( 𝑎 = 𝑥 → ( 𝑎 <s 𝑏 ↔ 𝑥 <s 𝑏 ) ) |
61 |
59 60
|
sylbi |
⊢ ( 𝑎 ∈ { 𝑥 } → ( 𝑎 <s 𝑏 ↔ 𝑥 <s 𝑏 ) ) |
62 |
61
|
3ad2ant2 |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) ∧ 𝑎 ∈ { 𝑥 } ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 <s 𝑏 ↔ 𝑥 <s 𝑏 ) ) |
63 |
58 62
|
mpbird |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) ∧ 𝑎 ∈ { 𝑥 } ∧ 𝑏 ∈ 𝐵 ) → 𝑎 <s 𝑏 ) |
64 |
27 29 30 32 63
|
ssltd |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) → { 𝑥 } <<s 𝐵 ) |
65 |
64
|
anim1ci |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) ∧ 𝐴 <<s { 𝑥 } ) → ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) ) |
66 |
24 25 65
|
elrabd |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) ∧ 𝐴 <<s { 𝑥 } ) → 𝑥 ∈ { 𝑡 ∈ No ∣ ( 𝐴 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐵 ) } ) |
67 |
|
fnfvima |
⊢ ( ( bday Fn No ∧ { 𝑡 ∈ No ∣ ( 𝐴 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐵 ) } ⊆ No ∧ 𝑥 ∈ { 𝑡 ∈ No ∣ ( 𝐴 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐵 ) } ) → ( bday ‘ 𝑥 ) ∈ ( bday “ { 𝑡 ∈ No ∣ ( 𝐴 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐵 ) } ) ) |
68 |
19 20 66 67
|
mp3an12i |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) ∧ 𝐴 <<s { 𝑥 } ) → ( bday ‘ 𝑥 ) ∈ ( bday “ { 𝑡 ∈ No ∣ ( 𝐴 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐵 ) } ) ) |
69 |
|
intss1 |
⊢ ( ( bday ‘ 𝑥 ) ∈ ( bday “ { 𝑡 ∈ No ∣ ( 𝐴 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐵 ) } ) → ∩ ( bday “ { 𝑡 ∈ No ∣ ( 𝐴 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐵 ) } ) ⊆ ( bday ‘ 𝑥 ) ) |
70 |
68 69
|
syl |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) ∧ 𝐴 <<s { 𝑥 } ) → ∩ ( bday “ { 𝑡 ∈ No ∣ ( 𝐴 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐵 ) } ) ⊆ ( bday ‘ 𝑥 ) ) |
71 |
18 70
|
eqsstrd |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) ∧ 𝐴 <<s { 𝑥 } ) → ( bday ‘ ( 𝐴 |s 𝐵 ) ) ⊆ ( bday ‘ 𝑥 ) ) |
72 |
16 71
|
mtand |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) → ¬ 𝐴 <<s { 𝑥 } ) |
73 |
|
ssltex1 |
⊢ ( 𝐴 <<s 𝐵 → 𝐴 ∈ V ) |
74 |
73
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑡 ∈ { 𝑥 } 𝑦 <s 𝑡 ) → 𝐴 ∈ V ) |
75 |
74 26
|
jctir |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑡 ∈ { 𝑥 } 𝑦 <s 𝑡 ) → ( 𝐴 ∈ V ∧ { 𝑥 } ∈ V ) ) |
76 |
|
ssltss1 |
⊢ ( 𝐴 <<s 𝐵 → 𝐴 ⊆ No ) |
77 |
76
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑡 ∈ { 𝑥 } 𝑦 <s 𝑡 ) → 𝐴 ⊆ No ) |
78 |
9
|
adantr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑡 ∈ { 𝑥 } 𝑦 <s 𝑡 ) → 𝑥 ∈ No ) |
79 |
78
|
snssd |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑡 ∈ { 𝑥 } 𝑦 <s 𝑡 ) → { 𝑥 } ⊆ No ) |
80 |
|
simpr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑡 ∈ { 𝑥 } 𝑦 <s 𝑡 ) → ∀ 𝑦 ∈ 𝐴 ∀ 𝑡 ∈ { 𝑥 } 𝑦 <s 𝑡 ) |
81 |
77 79 80
|
3jca |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑡 ∈ { 𝑥 } 𝑦 <s 𝑡 ) → ( 𝐴 ⊆ No ∧ { 𝑥 } ⊆ No ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑡 ∈ { 𝑥 } 𝑦 <s 𝑡 ) ) |
82 |
|
brsslt |
⊢ ( 𝐴 <<s { 𝑥 } ↔ ( ( 𝐴 ∈ V ∧ { 𝑥 } ∈ V ) ∧ ( 𝐴 ⊆ No ∧ { 𝑥 } ⊆ No ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑡 ∈ { 𝑥 } 𝑦 <s 𝑡 ) ) ) |
83 |
75 81 82
|
sylanbrc |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑡 ∈ { 𝑥 } 𝑦 <s 𝑡 ) → 𝐴 <<s { 𝑥 } ) |
84 |
72 83
|
mtand |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) → ¬ ∀ 𝑦 ∈ 𝐴 ∀ 𝑡 ∈ { 𝑥 } 𝑦 <s 𝑡 ) |
85 |
|
rexnal |
⊢ ( ∃ 𝑡 ∈ { 𝑥 } ¬ ∀ 𝑦 ∈ 𝐴 𝑦 <s 𝑡 ↔ ¬ ∀ 𝑡 ∈ { 𝑥 } ∀ 𝑦 ∈ 𝐴 𝑦 <s 𝑡 ) |
86 |
|
ralcom |
⊢ ( ∀ 𝑡 ∈ { 𝑥 } ∀ 𝑦 ∈ 𝐴 𝑦 <s 𝑡 ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑡 ∈ { 𝑥 } 𝑦 <s 𝑡 ) |
87 |
85 86
|
xchbinx |
⊢ ( ∃ 𝑡 ∈ { 𝑥 } ¬ ∀ 𝑦 ∈ 𝐴 𝑦 <s 𝑡 ↔ ¬ ∀ 𝑦 ∈ 𝐴 ∀ 𝑡 ∈ { 𝑥 } 𝑦 <s 𝑡 ) |
88 |
84 87
|
sylibr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) → ∃ 𝑡 ∈ { 𝑥 } ¬ ∀ 𝑦 ∈ 𝐴 𝑦 <s 𝑡 ) |
89 |
|
vex |
⊢ 𝑥 ∈ V |
90 |
|
breq2 |
⊢ ( 𝑡 = 𝑥 → ( 𝑦 <s 𝑡 ↔ 𝑦 <s 𝑥 ) ) |
91 |
90
|
ralbidv |
⊢ ( 𝑡 = 𝑥 → ( ∀ 𝑦 ∈ 𝐴 𝑦 <s 𝑡 ↔ ∀ 𝑦 ∈ 𝐴 𝑦 <s 𝑥 ) ) |
92 |
91
|
notbid |
⊢ ( 𝑡 = 𝑥 → ( ¬ ∀ 𝑦 ∈ 𝐴 𝑦 <s 𝑡 ↔ ¬ ∀ 𝑦 ∈ 𝐴 𝑦 <s 𝑥 ) ) |
93 |
89 92
|
rexsn |
⊢ ( ∃ 𝑡 ∈ { 𝑥 } ¬ ∀ 𝑦 ∈ 𝐴 𝑦 <s 𝑡 ↔ ¬ ∀ 𝑦 ∈ 𝐴 𝑦 <s 𝑥 ) |
94 |
88 93
|
sylib |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) → ¬ ∀ 𝑦 ∈ 𝐴 𝑦 <s 𝑥 ) |
95 |
76
|
ad2antrr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) → 𝐴 ⊆ No ) |
96 |
95
|
sselda |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ No ) |
97 |
|
slenlt |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) → ( 𝑥 ≤s 𝑦 ↔ ¬ 𝑦 <s 𝑥 ) ) |
98 |
9 96 97
|
syl2an2r |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ≤s 𝑦 ↔ ¬ 𝑦 <s 𝑥 ) ) |
99 |
98
|
rexbidva |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) → ( ∃ 𝑦 ∈ 𝐴 𝑥 ≤s 𝑦 ↔ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 <s 𝑥 ) ) |
100 |
|
rexnal |
⊢ ( ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 <s 𝑥 ↔ ¬ ∀ 𝑦 ∈ 𝐴 𝑦 <s 𝑥 ) |
101 |
99 100
|
bitrdi |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) → ( ∃ 𝑦 ∈ 𝐴 𝑥 ≤s 𝑦 ↔ ¬ ∀ 𝑦 ∈ 𝐴 𝑦 <s 𝑥 ) ) |
102 |
94 101
|
mpbird |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑥 ∈ ( L ‘ 𝑋 ) ) → ∃ 𝑦 ∈ 𝐴 𝑥 ≤s 𝑦 ) |
103 |
102
|
ralrimiva |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) → ∀ 𝑥 ∈ ( L ‘ 𝑋 ) ∃ 𝑦 ∈ 𝐴 𝑥 ≤s 𝑦 ) |
104 |
1
|
onssneli |
⊢ ( ( bday ‘ ( 𝐴 |s 𝐵 ) ) ⊆ ( bday ‘ 𝑧 ) → ¬ ( bday ‘ 𝑧 ) ∈ ( bday ‘ ( 𝐴 |s 𝐵 ) ) ) |
105 |
|
rightssold |
⊢ ( R ‘ 𝑋 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) |
106 |
105
|
a1i |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) → ( R ‘ 𝑋 ) ⊆ ( O ‘ ( bday ‘ 𝑋 ) ) ) |
107 |
106
|
sselda |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) → 𝑧 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ) |
108 |
|
rightssno |
⊢ ( R ‘ 𝑋 ) ⊆ No |
109 |
108
|
a1i |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) → ( R ‘ 𝑋 ) ⊆ No ) |
110 |
109
|
sselda |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) → 𝑧 ∈ No ) |
111 |
|
oldbday |
⊢ ( ( ( bday ‘ 𝑋 ) ∈ On ∧ 𝑧 ∈ No ) → ( 𝑧 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ↔ ( bday ‘ 𝑧 ) ∈ ( bday ‘ 𝑋 ) ) ) |
112 |
6 110 111
|
sylancr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) → ( 𝑧 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ↔ ( bday ‘ 𝑧 ) ∈ ( bday ‘ 𝑋 ) ) ) |
113 |
107 112
|
mpbid |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) → ( bday ‘ 𝑧 ) ∈ ( bday ‘ 𝑋 ) ) |
114 |
|
simplr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) → 𝑋 = ( 𝐴 |s 𝐵 ) ) |
115 |
114
|
fveq2d |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) → ( bday ‘ 𝑋 ) = ( bday ‘ ( 𝐴 |s 𝐵 ) ) ) |
116 |
113 115
|
eleqtrd |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) → ( bday ‘ 𝑧 ) ∈ ( bday ‘ ( 𝐴 |s 𝐵 ) ) ) |
117 |
104 116
|
nsyl3 |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) → ¬ ( bday ‘ ( 𝐴 |s 𝐵 ) ) ⊆ ( bday ‘ 𝑧 ) ) |
118 |
17
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) ∧ { 𝑧 } <<s 𝐵 ) → ( bday ‘ ( 𝐴 |s 𝐵 ) ) = ∩ ( bday “ { 𝑡 ∈ No ∣ ( 𝐴 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐵 ) } ) ) |
119 |
|
sneq |
⊢ ( 𝑡 = 𝑧 → { 𝑡 } = { 𝑧 } ) |
120 |
119
|
breq2d |
⊢ ( 𝑡 = 𝑧 → ( 𝐴 <<s { 𝑡 } ↔ 𝐴 <<s { 𝑧 } ) ) |
121 |
119
|
breq1d |
⊢ ( 𝑡 = 𝑧 → ( { 𝑡 } <<s 𝐵 ↔ { 𝑧 } <<s 𝐵 ) ) |
122 |
120 121
|
anbi12d |
⊢ ( 𝑡 = 𝑧 → ( ( 𝐴 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐵 ) ↔ ( 𝐴 <<s { 𝑧 } ∧ { 𝑧 } <<s 𝐵 ) ) ) |
123 |
110
|
adantr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) ∧ { 𝑧 } <<s 𝐵 ) → 𝑧 ∈ No ) |
124 |
73
|
ad2antrr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) → 𝐴 ∈ V ) |
125 |
|
snex |
⊢ { 𝑧 } ∈ V |
126 |
125
|
a1i |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) → { 𝑧 } ∈ V ) |
127 |
76
|
ad2antrr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) → 𝐴 ⊆ No ) |
128 |
110
|
snssd |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) → { 𝑧 } ⊆ No ) |
129 |
127
|
sselda |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ No ) |
130 |
37
|
ad2antrr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝑋 ∈ No ) |
131 |
110
|
adantr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝑧 ∈ No ) |
132 |
48
|
ad2antrr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) → ( ( 𝐴 |s 𝐵 ) ∈ No ∧ 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) ) |
133 |
132
|
simp2d |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) → 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ) |
134 |
|
ssltsepc |
⊢ ( ( 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ 𝑎 ∈ 𝐴 ∧ ( 𝐴 |s 𝐵 ) ∈ { ( 𝐴 |s 𝐵 ) } ) → 𝑎 <s ( 𝐴 |s 𝐵 ) ) |
135 |
52 134
|
mp3an3 |
⊢ ( ( 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ 𝑎 ∈ 𝐴 ) → 𝑎 <s ( 𝐴 |s 𝐵 ) ) |
136 |
133 135
|
sylan |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝑎 <s ( 𝐴 |s 𝐵 ) ) |
137 |
|
simpllr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝑋 = ( 𝐴 |s 𝐵 ) ) |
138 |
136 137
|
breqtrrd |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝑎 <s 𝑋 ) |
139 |
|
rightval |
⊢ ( R ‘ 𝑋 ) = { 𝑧 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑋 <s 𝑧 } |
140 |
139
|
a1i |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) → ( R ‘ 𝑋 ) = { 𝑧 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑋 <s 𝑧 } ) |
141 |
140
|
eleq2d |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) → ( 𝑧 ∈ ( R ‘ 𝑋 ) ↔ 𝑧 ∈ { 𝑧 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑋 <s 𝑧 } ) ) |
142 |
|
rabid |
⊢ ( 𝑧 ∈ { 𝑧 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑋 <s 𝑧 } ↔ ( 𝑧 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝑋 <s 𝑧 ) ) |
143 |
141 142
|
bitrdi |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) → ( 𝑧 ∈ ( R ‘ 𝑋 ) ↔ ( 𝑧 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝑋 <s 𝑧 ) ) ) |
144 |
143
|
simplbda |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) → 𝑋 <s 𝑧 ) |
145 |
144
|
adantr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝑋 <s 𝑧 ) |
146 |
129 130 131 138 145
|
slttrd |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝑎 <s 𝑧 ) |
147 |
146
|
3adant3 |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ { 𝑧 } ) → 𝑎 <s 𝑧 ) |
148 |
|
velsn |
⊢ ( 𝑏 ∈ { 𝑧 } ↔ 𝑏 = 𝑧 ) |
149 |
|
breq2 |
⊢ ( 𝑏 = 𝑧 → ( 𝑎 <s 𝑏 ↔ 𝑎 <s 𝑧 ) ) |
150 |
148 149
|
sylbi |
⊢ ( 𝑏 ∈ { 𝑧 } → ( 𝑎 <s 𝑏 ↔ 𝑎 <s 𝑧 ) ) |
151 |
150
|
3ad2ant3 |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ { 𝑧 } ) → ( 𝑎 <s 𝑏 ↔ 𝑎 <s 𝑧 ) ) |
152 |
147 151
|
mpbird |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ { 𝑧 } ) → 𝑎 <s 𝑏 ) |
153 |
124 126 127 128 152
|
ssltd |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) → 𝐴 <<s { 𝑧 } ) |
154 |
153
|
anim1i |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) ∧ { 𝑧 } <<s 𝐵 ) → ( 𝐴 <<s { 𝑧 } ∧ { 𝑧 } <<s 𝐵 ) ) |
155 |
122 123 154
|
elrabd |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) ∧ { 𝑧 } <<s 𝐵 ) → 𝑧 ∈ { 𝑡 ∈ No ∣ ( 𝐴 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐵 ) } ) |
156 |
|
fnfvima |
⊢ ( ( bday Fn No ∧ { 𝑡 ∈ No ∣ ( 𝐴 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐵 ) } ⊆ No ∧ 𝑧 ∈ { 𝑡 ∈ No ∣ ( 𝐴 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐵 ) } ) → ( bday ‘ 𝑧 ) ∈ ( bday “ { 𝑡 ∈ No ∣ ( 𝐴 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐵 ) } ) ) |
157 |
19 20 155 156
|
mp3an12i |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) ∧ { 𝑧 } <<s 𝐵 ) → ( bday ‘ 𝑧 ) ∈ ( bday “ { 𝑡 ∈ No ∣ ( 𝐴 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐵 ) } ) ) |
158 |
|
intss1 |
⊢ ( ( bday ‘ 𝑧 ) ∈ ( bday “ { 𝑡 ∈ No ∣ ( 𝐴 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐵 ) } ) → ∩ ( bday “ { 𝑡 ∈ No ∣ ( 𝐴 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐵 ) } ) ⊆ ( bday ‘ 𝑧 ) ) |
159 |
157 158
|
syl |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) ∧ { 𝑧 } <<s 𝐵 ) → ∩ ( bday “ { 𝑡 ∈ No ∣ ( 𝐴 <<s { 𝑡 } ∧ { 𝑡 } <<s 𝐵 ) } ) ⊆ ( bday ‘ 𝑧 ) ) |
160 |
118 159
|
eqsstrd |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) ∧ { 𝑧 } <<s 𝐵 ) → ( bday ‘ ( 𝐴 |s 𝐵 ) ) ⊆ ( bday ‘ 𝑧 ) ) |
161 |
117 160
|
mtand |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) → ¬ { 𝑧 } <<s 𝐵 ) |
162 |
28
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) ∧ ∀ 𝑡 ∈ { 𝑧 } ∀ 𝑤 ∈ 𝐵 𝑡 <s 𝑤 ) → 𝐵 ∈ V ) |
163 |
162 125
|
jctil |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) ∧ ∀ 𝑡 ∈ { 𝑧 } ∀ 𝑤 ∈ 𝐵 𝑡 <s 𝑤 ) → ( { 𝑧 } ∈ V ∧ 𝐵 ∈ V ) ) |
164 |
128
|
adantr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) ∧ ∀ 𝑡 ∈ { 𝑧 } ∀ 𝑤 ∈ 𝐵 𝑡 <s 𝑤 ) → { 𝑧 } ⊆ No ) |
165 |
31
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) ∧ ∀ 𝑡 ∈ { 𝑧 } ∀ 𝑤 ∈ 𝐵 𝑡 <s 𝑤 ) → 𝐵 ⊆ No ) |
166 |
|
simpr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) ∧ ∀ 𝑡 ∈ { 𝑧 } ∀ 𝑤 ∈ 𝐵 𝑡 <s 𝑤 ) → ∀ 𝑡 ∈ { 𝑧 } ∀ 𝑤 ∈ 𝐵 𝑡 <s 𝑤 ) |
167 |
164 165 166
|
3jca |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) ∧ ∀ 𝑡 ∈ { 𝑧 } ∀ 𝑤 ∈ 𝐵 𝑡 <s 𝑤 ) → ( { 𝑧 } ⊆ No ∧ 𝐵 ⊆ No ∧ ∀ 𝑡 ∈ { 𝑧 } ∀ 𝑤 ∈ 𝐵 𝑡 <s 𝑤 ) ) |
168 |
|
brsslt |
⊢ ( { 𝑧 } <<s 𝐵 ↔ ( ( { 𝑧 } ∈ V ∧ 𝐵 ∈ V ) ∧ ( { 𝑧 } ⊆ No ∧ 𝐵 ⊆ No ∧ ∀ 𝑡 ∈ { 𝑧 } ∀ 𝑤 ∈ 𝐵 𝑡 <s 𝑤 ) ) ) |
169 |
163 167 168
|
sylanbrc |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) ∧ ∀ 𝑡 ∈ { 𝑧 } ∀ 𝑤 ∈ 𝐵 𝑡 <s 𝑤 ) → { 𝑧 } <<s 𝐵 ) |
170 |
161 169
|
mtand |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) → ¬ ∀ 𝑡 ∈ { 𝑧 } ∀ 𝑤 ∈ 𝐵 𝑡 <s 𝑤 ) |
171 |
|
rexnal |
⊢ ( ∃ 𝑡 ∈ { 𝑧 } ¬ ∀ 𝑤 ∈ 𝐵 𝑡 <s 𝑤 ↔ ¬ ∀ 𝑡 ∈ { 𝑧 } ∀ 𝑤 ∈ 𝐵 𝑡 <s 𝑤 ) |
172 |
170 171
|
sylibr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) → ∃ 𝑡 ∈ { 𝑧 } ¬ ∀ 𝑤 ∈ 𝐵 𝑡 <s 𝑤 ) |
173 |
|
vex |
⊢ 𝑧 ∈ V |
174 |
|
breq1 |
⊢ ( 𝑡 = 𝑧 → ( 𝑡 <s 𝑤 ↔ 𝑧 <s 𝑤 ) ) |
175 |
174
|
ralbidv |
⊢ ( 𝑡 = 𝑧 → ( ∀ 𝑤 ∈ 𝐵 𝑡 <s 𝑤 ↔ ∀ 𝑤 ∈ 𝐵 𝑧 <s 𝑤 ) ) |
176 |
175
|
notbid |
⊢ ( 𝑡 = 𝑧 → ( ¬ ∀ 𝑤 ∈ 𝐵 𝑡 <s 𝑤 ↔ ¬ ∀ 𝑤 ∈ 𝐵 𝑧 <s 𝑤 ) ) |
177 |
173 176
|
rexsn |
⊢ ( ∃ 𝑡 ∈ { 𝑧 } ¬ ∀ 𝑤 ∈ 𝐵 𝑡 <s 𝑤 ↔ ¬ ∀ 𝑤 ∈ 𝐵 𝑧 <s 𝑤 ) |
178 |
172 177
|
sylib |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) → ¬ ∀ 𝑤 ∈ 𝐵 𝑧 <s 𝑤 ) |
179 |
31
|
ad2antrr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) → 𝐵 ⊆ No ) |
180 |
179
|
sselda |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) ∧ 𝑤 ∈ 𝐵 ) → 𝑤 ∈ No ) |
181 |
110
|
adantr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) ∧ 𝑤 ∈ 𝐵 ) → 𝑧 ∈ No ) |
182 |
|
slenlt |
⊢ ( ( 𝑤 ∈ No ∧ 𝑧 ∈ No ) → ( 𝑤 ≤s 𝑧 ↔ ¬ 𝑧 <s 𝑤 ) ) |
183 |
180 181 182
|
syl2anc |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) ∧ 𝑤 ∈ 𝐵 ) → ( 𝑤 ≤s 𝑧 ↔ ¬ 𝑧 <s 𝑤 ) ) |
184 |
183
|
rexbidva |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) → ( ∃ 𝑤 ∈ 𝐵 𝑤 ≤s 𝑧 ↔ ∃ 𝑤 ∈ 𝐵 ¬ 𝑧 <s 𝑤 ) ) |
185 |
|
rexnal |
⊢ ( ∃ 𝑤 ∈ 𝐵 ¬ 𝑧 <s 𝑤 ↔ ¬ ∀ 𝑤 ∈ 𝐵 𝑧 <s 𝑤 ) |
186 |
184 185
|
bitrdi |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) → ( ∃ 𝑤 ∈ 𝐵 𝑤 ≤s 𝑧 ↔ ¬ ∀ 𝑤 ∈ 𝐵 𝑧 <s 𝑤 ) ) |
187 |
178 186
|
mpbird |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) ∧ 𝑧 ∈ ( R ‘ 𝑋 ) ) → ∃ 𝑤 ∈ 𝐵 𝑤 ≤s 𝑧 ) |
188 |
187
|
ralrimiva |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) → ∀ 𝑧 ∈ ( R ‘ 𝑋 ) ∃ 𝑤 ∈ 𝐵 𝑤 ≤s 𝑧 ) |
189 |
103 188
|
jca |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝑋 = ( 𝐴 |s 𝐵 ) ) → ( ∀ 𝑥 ∈ ( L ‘ 𝑋 ) ∃ 𝑦 ∈ 𝐴 𝑥 ≤s 𝑦 ∧ ∀ 𝑧 ∈ ( R ‘ 𝑋 ) ∃ 𝑤 ∈ 𝐵 𝑤 ≤s 𝑧 ) ) |