Description: Negative of both sides of surreal less-than or equal. (Contributed by Scott Fenton, 14-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sltnegd.1 | |- ( ph -> A e. No ) |
|
| sltnegd.2 | |- ( ph -> B e. No ) |
||
| Assertion | slenegd | |- ( ph -> ( A <_s B <-> ( -us ` B ) <_s ( -us ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sltnegd.1 | |- ( ph -> A e. No ) |
|
| 2 | sltnegd.2 | |- ( ph -> B e. No ) |
|
| 3 | sleneg | |- ( ( A e. No /\ B e. No ) -> ( A <_s B <-> ( -us ` B ) <_s ( -us ` A ) ) ) |
|
| 4 | 1 2 3 | syl2anc | |- ( ph -> ( A <_s B <-> ( -us ` B ) <_s ( -us ` A ) ) ) |