Metamath Proof Explorer


Theorem slenegd

Description: Negative of both sides of surreal less-than or equal. (Contributed by Scott Fenton, 14-Mar-2025)

Ref Expression
Hypotheses sltnegd.1 φANo
sltnegd.2 φBNo
Assertion slenegd Could not format assertion : No typesetting found for |- ( ph -> ( A <_s B <-> ( -us ` B ) <_s ( -us ` A ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 sltnegd.1 φANo
2 sltnegd.2 φBNo
3 sleneg Could not format ( ( A e. No /\ B e. No ) -> ( A <_s B <-> ( -us ` B ) <_s ( -us ` A ) ) ) : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( A <_s B <-> ( -us ` B ) <_s ( -us ` A ) ) ) with typecode |-
4 1 2 3 syl2anc Could not format ( ph -> ( A <_s B <-> ( -us ` B ) <_s ( -us ` A ) ) ) : No typesetting found for |- ( ph -> ( A <_s B <-> ( -us ` B ) <_s ( -us ` A ) ) ) with typecode |-