| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zsoring.1 |
|- ZZ_s = ( Base ` K ) |
| 2 |
|
zsoring.2 |
|- ( +s |` ( ZZ_s X. ZZ_s ) ) = ( +g ` K ) |
| 3 |
|
zsoring.3 |
|- ( x.s |` ( ZZ_s X. ZZ_s ) ) = ( .r ` K ) |
| 4 |
|
zsoring.4 |
|- ( <_s i^i ( ZZ_s X. ZZ_s ) ) = ( le ` K ) |
| 5 |
|
zsoring.5 |
|- 0s = ( 0g ` K ) |
| 6 |
|
ovres |
|- ( ( x e. ZZ_s /\ y e. ZZ_s ) -> ( x ( +s |` ( ZZ_s X. ZZ_s ) ) y ) = ( x +s y ) ) |
| 7 |
|
zaddscl |
|- ( ( x e. ZZ_s /\ y e. ZZ_s ) -> ( x +s y ) e. ZZ_s ) |
| 8 |
6 7
|
eqeltrd |
|- ( ( x e. ZZ_s /\ y e. ZZ_s ) -> ( x ( +s |` ( ZZ_s X. ZZ_s ) ) y ) e. ZZ_s ) |
| 9 |
|
zno |
|- ( x e. ZZ_s -> x e. No ) |
| 10 |
|
zno |
|- ( y e. ZZ_s -> y e. No ) |
| 11 |
|
zno |
|- ( z e. ZZ_s -> z e. No ) |
| 12 |
|
addsass |
|- ( ( x e. No /\ y e. No /\ z e. No ) -> ( ( x +s y ) +s z ) = ( x +s ( y +s z ) ) ) |
| 13 |
9 10 11 12
|
syl3an |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( ( x +s y ) +s z ) = ( x +s ( y +s z ) ) ) |
| 14 |
6
|
3adant3 |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( x ( +s |` ( ZZ_s X. ZZ_s ) ) y ) = ( x +s y ) ) |
| 15 |
14
|
oveq1d |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( ( x ( +s |` ( ZZ_s X. ZZ_s ) ) y ) ( +s |` ( ZZ_s X. ZZ_s ) ) z ) = ( ( x +s y ) ( +s |` ( ZZ_s X. ZZ_s ) ) z ) ) |
| 16 |
7
|
3adant3 |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( x +s y ) e. ZZ_s ) |
| 17 |
|
simp3 |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> z e. ZZ_s ) |
| 18 |
16 17
|
ovresd |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( ( x +s y ) ( +s |` ( ZZ_s X. ZZ_s ) ) z ) = ( ( x +s y ) +s z ) ) |
| 19 |
15 18
|
eqtrd |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( ( x ( +s |` ( ZZ_s X. ZZ_s ) ) y ) ( +s |` ( ZZ_s X. ZZ_s ) ) z ) = ( ( x +s y ) +s z ) ) |
| 20 |
|
ovres |
|- ( ( y e. ZZ_s /\ z e. ZZ_s ) -> ( y ( +s |` ( ZZ_s X. ZZ_s ) ) z ) = ( y +s z ) ) |
| 21 |
20
|
3adant1 |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( y ( +s |` ( ZZ_s X. ZZ_s ) ) z ) = ( y +s z ) ) |
| 22 |
21
|
oveq2d |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( x ( +s |` ( ZZ_s X. ZZ_s ) ) ( y ( +s |` ( ZZ_s X. ZZ_s ) ) z ) ) = ( x ( +s |` ( ZZ_s X. ZZ_s ) ) ( y +s z ) ) ) |
| 23 |
|
simp1 |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> x e. ZZ_s ) |
| 24 |
|
zaddscl |
|- ( ( y e. ZZ_s /\ z e. ZZ_s ) -> ( y +s z ) e. ZZ_s ) |
| 25 |
24
|
3adant1 |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( y +s z ) e. ZZ_s ) |
| 26 |
23 25
|
ovresd |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( x ( +s |` ( ZZ_s X. ZZ_s ) ) ( y +s z ) ) = ( x +s ( y +s z ) ) ) |
| 27 |
22 26
|
eqtrd |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( x ( +s |` ( ZZ_s X. ZZ_s ) ) ( y ( +s |` ( ZZ_s X. ZZ_s ) ) z ) ) = ( x +s ( y +s z ) ) ) |
| 28 |
13 19 27
|
3eqtr4d |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( ( x ( +s |` ( ZZ_s X. ZZ_s ) ) y ) ( +s |` ( ZZ_s X. ZZ_s ) ) z ) = ( x ( +s |` ( ZZ_s X. ZZ_s ) ) ( y ( +s |` ( ZZ_s X. ZZ_s ) ) z ) ) ) |
| 29 |
|
0zs |
|- 0s e. ZZ_s |
| 30 |
|
ovres |
|- ( ( 0s e. ZZ_s /\ x e. ZZ_s ) -> ( 0s ( +s |` ( ZZ_s X. ZZ_s ) ) x ) = ( 0s +s x ) ) |
| 31 |
29 30
|
mpan |
|- ( x e. ZZ_s -> ( 0s ( +s |` ( ZZ_s X. ZZ_s ) ) x ) = ( 0s +s x ) ) |
| 32 |
|
addslid |
|- ( x e. No -> ( 0s +s x ) = x ) |
| 33 |
9 32
|
syl |
|- ( x e. ZZ_s -> ( 0s +s x ) = x ) |
| 34 |
31 33
|
eqtrd |
|- ( x e. ZZ_s -> ( 0s ( +s |` ( ZZ_s X. ZZ_s ) ) x ) = x ) |
| 35 |
|
znegscl |
|- ( x e. ZZ_s -> ( -us ` x ) e. ZZ_s ) |
| 36 |
|
id |
|- ( x e. ZZ_s -> x e. ZZ_s ) |
| 37 |
35 36
|
ovresd |
|- ( x e. ZZ_s -> ( ( -us ` x ) ( +s |` ( ZZ_s X. ZZ_s ) ) x ) = ( ( -us ` x ) +s x ) ) |
| 38 |
35
|
znod |
|- ( x e. ZZ_s -> ( -us ` x ) e. No ) |
| 39 |
38 9
|
addscomd |
|- ( x e. ZZ_s -> ( ( -us ` x ) +s x ) = ( x +s ( -us ` x ) ) ) |
| 40 |
9
|
negsidd |
|- ( x e. ZZ_s -> ( x +s ( -us ` x ) ) = 0s ) |
| 41 |
37 39 40
|
3eqtrd |
|- ( x e. ZZ_s -> ( ( -us ` x ) ( +s |` ( ZZ_s X. ZZ_s ) ) x ) = 0s ) |
| 42 |
1 2 8 28 29 34 35 41
|
isgrpi |
|- K e. Grp |
| 43 |
|
ovres |
|- ( ( x e. ZZ_s /\ y e. ZZ_s ) -> ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) = ( x x.s y ) ) |
| 44 |
|
simpl |
|- ( ( x e. ZZ_s /\ y e. ZZ_s ) -> x e. ZZ_s ) |
| 45 |
|
simpr |
|- ( ( x e. ZZ_s /\ y e. ZZ_s ) -> y e. ZZ_s ) |
| 46 |
44 45
|
zmulscld |
|- ( ( x e. ZZ_s /\ y e. ZZ_s ) -> ( x x.s y ) e. ZZ_s ) |
| 47 |
43 46
|
eqeltrd |
|- ( ( x e. ZZ_s /\ y e. ZZ_s ) -> ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) e. ZZ_s ) |
| 48 |
|
mulsass |
|- ( ( x e. No /\ y e. No /\ z e. No ) -> ( ( x x.s y ) x.s z ) = ( x x.s ( y x.s z ) ) ) |
| 49 |
9 10 11 48
|
syl3an |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( ( x x.s y ) x.s z ) = ( x x.s ( y x.s z ) ) ) |
| 50 |
43
|
3adant3 |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) = ( x x.s y ) ) |
| 51 |
50
|
oveq1d |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) = ( ( x x.s y ) ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) ) |
| 52 |
|
simp2 |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> y e. ZZ_s ) |
| 53 |
23 52
|
zmulscld |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( x x.s y ) e. ZZ_s ) |
| 54 |
53 17
|
ovresd |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( ( x x.s y ) ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) = ( ( x x.s y ) x.s z ) ) |
| 55 |
51 54
|
eqtrd |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) = ( ( x x.s y ) x.s z ) ) |
| 56 |
|
ovres |
|- ( ( y e. ZZ_s /\ z e. ZZ_s ) -> ( y ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) = ( y x.s z ) ) |
| 57 |
56
|
3adant1 |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( y ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) = ( y x.s z ) ) |
| 58 |
57
|
oveq2d |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) ( y ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) ) = ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) ( y x.s z ) ) ) |
| 59 |
52 17
|
zmulscld |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( y x.s z ) e. ZZ_s ) |
| 60 |
23 59
|
ovresd |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) ( y x.s z ) ) = ( x x.s ( y x.s z ) ) ) |
| 61 |
58 60
|
eqtrd |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) ( y ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) ) = ( x x.s ( y x.s z ) ) ) |
| 62 |
49 55 61
|
3eqtr4d |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) = ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) ( y ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) ) ) |
| 63 |
62
|
3expa |
|- ( ( ( x e. ZZ_s /\ y e. ZZ_s ) /\ z e. ZZ_s ) -> ( ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) = ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) ( y ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) ) ) |
| 64 |
63
|
ralrimiva |
|- ( ( x e. ZZ_s /\ y e. ZZ_s ) -> A. z e. ZZ_s ( ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) = ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) ( y ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) ) ) |
| 65 |
47 64
|
jca |
|- ( ( x e. ZZ_s /\ y e. ZZ_s ) -> ( ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) e. ZZ_s /\ A. z e. ZZ_s ( ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) = ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) ( y ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) ) ) ) |
| 66 |
65
|
rgen2 |
|- A. x e. ZZ_s A. y e. ZZ_s ( ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) e. ZZ_s /\ A. z e. ZZ_s ( ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) = ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) ( y ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) ) ) |
| 67 |
|
1zs |
|- 1s e. ZZ_s |
| 68 |
|
ovres |
|- ( ( 1s e. ZZ_s /\ x e. ZZ_s ) -> ( 1s ( x.s |` ( ZZ_s X. ZZ_s ) ) x ) = ( 1s x.s x ) ) |
| 69 |
67 68
|
mpan |
|- ( x e. ZZ_s -> ( 1s ( x.s |` ( ZZ_s X. ZZ_s ) ) x ) = ( 1s x.s x ) ) |
| 70 |
9
|
mulslidd |
|- ( x e. ZZ_s -> ( 1s x.s x ) = x ) |
| 71 |
69 70
|
eqtrd |
|- ( x e. ZZ_s -> ( 1s ( x.s |` ( ZZ_s X. ZZ_s ) ) x ) = x ) |
| 72 |
|
ovres |
|- ( ( x e. ZZ_s /\ 1s e. ZZ_s ) -> ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) 1s ) = ( x x.s 1s ) ) |
| 73 |
67 72
|
mpan2 |
|- ( x e. ZZ_s -> ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) 1s ) = ( x x.s 1s ) ) |
| 74 |
9
|
mulsridd |
|- ( x e. ZZ_s -> ( x x.s 1s ) = x ) |
| 75 |
73 74
|
eqtrd |
|- ( x e. ZZ_s -> ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) 1s ) = x ) |
| 76 |
71 75
|
jca |
|- ( x e. ZZ_s -> ( ( 1s ( x.s |` ( ZZ_s X. ZZ_s ) ) x ) = x /\ ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) 1s ) = x ) ) |
| 77 |
76
|
rgen |
|- A. x e. ZZ_s ( ( 1s ( x.s |` ( ZZ_s X. ZZ_s ) ) x ) = x /\ ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) 1s ) = x ) |
| 78 |
|
oveq1 |
|- ( y = 1s -> ( y ( x.s |` ( ZZ_s X. ZZ_s ) ) x ) = ( 1s ( x.s |` ( ZZ_s X. ZZ_s ) ) x ) ) |
| 79 |
78
|
eqeq1d |
|- ( y = 1s -> ( ( y ( x.s |` ( ZZ_s X. ZZ_s ) ) x ) = x <-> ( 1s ( x.s |` ( ZZ_s X. ZZ_s ) ) x ) = x ) ) |
| 80 |
79
|
ovanraleqv |
|- ( y = 1s -> ( A. x e. ZZ_s ( ( y ( x.s |` ( ZZ_s X. ZZ_s ) ) x ) = x /\ ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) = x ) <-> A. x e. ZZ_s ( ( 1s ( x.s |` ( ZZ_s X. ZZ_s ) ) x ) = x /\ ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) 1s ) = x ) ) ) |
| 81 |
80
|
rspcev |
|- ( ( 1s e. ZZ_s /\ A. x e. ZZ_s ( ( 1s ( x.s |` ( ZZ_s X. ZZ_s ) ) x ) = x /\ ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) 1s ) = x ) ) -> E. y e. ZZ_s A. x e. ZZ_s ( ( y ( x.s |` ( ZZ_s X. ZZ_s ) ) x ) = x /\ ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) = x ) ) |
| 82 |
67 77 81
|
mp2an |
|- E. y e. ZZ_s A. x e. ZZ_s ( ( y ( x.s |` ( ZZ_s X. ZZ_s ) ) x ) = x /\ ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) = x ) |
| 83 |
|
eqid |
|- ( mulGrp ` K ) = ( mulGrp ` K ) |
| 84 |
83 1
|
mgpbas |
|- ZZ_s = ( Base ` ( mulGrp ` K ) ) |
| 85 |
83 3
|
mgpplusg |
|- ( x.s |` ( ZZ_s X. ZZ_s ) ) = ( +g ` ( mulGrp ` K ) ) |
| 86 |
84 85
|
ismnd |
|- ( ( mulGrp ` K ) e. Mnd <-> ( A. x e. ZZ_s A. y e. ZZ_s ( ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) e. ZZ_s /\ A. z e. ZZ_s ( ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) = ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) ( y ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) ) ) /\ E. y e. ZZ_s A. x e. ZZ_s ( ( y ( x.s |` ( ZZ_s X. ZZ_s ) ) x ) = x /\ ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) = x ) ) ) |
| 87 |
66 82 86
|
mpbir2an |
|- ( mulGrp ` K ) e. Mnd |
| 88 |
|
addsdi |
|- ( ( x e. No /\ y e. No /\ z e. No ) -> ( x x.s ( y +s z ) ) = ( ( x x.s y ) +s ( x x.s z ) ) ) |
| 89 |
9 10 11 88
|
syl3an |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( x x.s ( y +s z ) ) = ( ( x x.s y ) +s ( x x.s z ) ) ) |
| 90 |
21
|
oveq2d |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) ( y ( +s |` ( ZZ_s X. ZZ_s ) ) z ) ) = ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) ( y +s z ) ) ) |
| 91 |
23 25
|
ovresd |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) ( y +s z ) ) = ( x x.s ( y +s z ) ) ) |
| 92 |
90 91
|
eqtrd |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) ( y ( +s |` ( ZZ_s X. ZZ_s ) ) z ) ) = ( x x.s ( y +s z ) ) ) |
| 93 |
|
ovres |
|- ( ( x e. ZZ_s /\ z e. ZZ_s ) -> ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) = ( x x.s z ) ) |
| 94 |
93
|
3adant2 |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) = ( x x.s z ) ) |
| 95 |
50 94
|
oveq12d |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) ( +s |` ( ZZ_s X. ZZ_s ) ) ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) ) = ( ( x x.s y ) ( +s |` ( ZZ_s X. ZZ_s ) ) ( x x.s z ) ) ) |
| 96 |
23 17
|
zmulscld |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( x x.s z ) e. ZZ_s ) |
| 97 |
53 96
|
ovresd |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( ( x x.s y ) ( +s |` ( ZZ_s X. ZZ_s ) ) ( x x.s z ) ) = ( ( x x.s y ) +s ( x x.s z ) ) ) |
| 98 |
95 97
|
eqtrd |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) ( +s |` ( ZZ_s X. ZZ_s ) ) ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) ) = ( ( x x.s y ) +s ( x x.s z ) ) ) |
| 99 |
89 92 98
|
3eqtr4d |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) ( y ( +s |` ( ZZ_s X. ZZ_s ) ) z ) ) = ( ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) ( +s |` ( ZZ_s X. ZZ_s ) ) ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) ) ) |
| 100 |
23
|
znod |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> x e. No ) |
| 101 |
52
|
znod |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> y e. No ) |
| 102 |
17
|
znod |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> z e. No ) |
| 103 |
100 101 102
|
addsdird |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( ( x +s y ) x.s z ) = ( ( x x.s z ) +s ( y x.s z ) ) ) |
| 104 |
14
|
oveq1d |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( ( x ( +s |` ( ZZ_s X. ZZ_s ) ) y ) ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) = ( ( x +s y ) ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) ) |
| 105 |
16 17
|
ovresd |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( ( x +s y ) ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) = ( ( x +s y ) x.s z ) ) |
| 106 |
104 105
|
eqtrd |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( ( x ( +s |` ( ZZ_s X. ZZ_s ) ) y ) ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) = ( ( x +s y ) x.s z ) ) |
| 107 |
94 57
|
oveq12d |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) ( +s |` ( ZZ_s X. ZZ_s ) ) ( y ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) ) = ( ( x x.s z ) ( +s |` ( ZZ_s X. ZZ_s ) ) ( y x.s z ) ) ) |
| 108 |
96 59
|
ovresd |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( ( x x.s z ) ( +s |` ( ZZ_s X. ZZ_s ) ) ( y x.s z ) ) = ( ( x x.s z ) +s ( y x.s z ) ) ) |
| 109 |
107 108
|
eqtrd |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) ( +s |` ( ZZ_s X. ZZ_s ) ) ( y ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) ) = ( ( x x.s z ) +s ( y x.s z ) ) ) |
| 110 |
103 106 109
|
3eqtr4d |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( ( x ( +s |` ( ZZ_s X. ZZ_s ) ) y ) ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) = ( ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) ( +s |` ( ZZ_s X. ZZ_s ) ) ( y ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) ) ) |
| 111 |
99 110
|
jca |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) ( y ( +s |` ( ZZ_s X. ZZ_s ) ) z ) ) = ( ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) ( +s |` ( ZZ_s X. ZZ_s ) ) ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) ) /\ ( ( x ( +s |` ( ZZ_s X. ZZ_s ) ) y ) ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) = ( ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) ( +s |` ( ZZ_s X. ZZ_s ) ) ( y ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) ) ) ) |
| 112 |
111
|
rgen3 |
|- A. x e. ZZ_s A. y e. ZZ_s A. z e. ZZ_s ( ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) ( y ( +s |` ( ZZ_s X. ZZ_s ) ) z ) ) = ( ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) ( +s |` ( ZZ_s X. ZZ_s ) ) ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) ) /\ ( ( x ( +s |` ( ZZ_s X. ZZ_s ) ) y ) ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) = ( ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) ( +s |` ( ZZ_s X. ZZ_s ) ) ( y ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) ) ) |
| 113 |
1 83 2 3
|
isring |
|- ( K e. Ring <-> ( K e. Grp /\ ( mulGrp ` K ) e. Mnd /\ A. x e. ZZ_s A. y e. ZZ_s A. z e. ZZ_s ( ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) ( y ( +s |` ( ZZ_s X. ZZ_s ) ) z ) ) = ( ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) ( +s |` ( ZZ_s X. ZZ_s ) ) ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) ) /\ ( ( x ( +s |` ( ZZ_s X. ZZ_s ) ) y ) ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) = ( ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) ( +s |` ( ZZ_s X. ZZ_s ) ) ( y ( x.s |` ( ZZ_s X. ZZ_s ) ) z ) ) ) ) ) |
| 114 |
42 87 112 113
|
mpbir3an |
|- K e. Ring |
| 115 |
28
|
3expa |
|- ( ( ( x e. ZZ_s /\ y e. ZZ_s ) /\ z e. ZZ_s ) -> ( ( x ( +s |` ( ZZ_s X. ZZ_s ) ) y ) ( +s |` ( ZZ_s X. ZZ_s ) ) z ) = ( x ( +s |` ( ZZ_s X. ZZ_s ) ) ( y ( +s |` ( ZZ_s X. ZZ_s ) ) z ) ) ) |
| 116 |
115
|
ralrimiva |
|- ( ( x e. ZZ_s /\ y e. ZZ_s ) -> A. z e. ZZ_s ( ( x ( +s |` ( ZZ_s X. ZZ_s ) ) y ) ( +s |` ( ZZ_s X. ZZ_s ) ) z ) = ( x ( +s |` ( ZZ_s X. ZZ_s ) ) ( y ( +s |` ( ZZ_s X. ZZ_s ) ) z ) ) ) |
| 117 |
8 116
|
jca |
|- ( ( x e. ZZ_s /\ y e. ZZ_s ) -> ( ( x ( +s |` ( ZZ_s X. ZZ_s ) ) y ) e. ZZ_s /\ A. z e. ZZ_s ( ( x ( +s |` ( ZZ_s X. ZZ_s ) ) y ) ( +s |` ( ZZ_s X. ZZ_s ) ) z ) = ( x ( +s |` ( ZZ_s X. ZZ_s ) ) ( y ( +s |` ( ZZ_s X. ZZ_s ) ) z ) ) ) ) |
| 118 |
117
|
rgen2 |
|- A. x e. ZZ_s A. y e. ZZ_s ( ( x ( +s |` ( ZZ_s X. ZZ_s ) ) y ) e. ZZ_s /\ A. z e. ZZ_s ( ( x ( +s |` ( ZZ_s X. ZZ_s ) ) y ) ( +s |` ( ZZ_s X. ZZ_s ) ) z ) = ( x ( +s |` ( ZZ_s X. ZZ_s ) ) ( y ( +s |` ( ZZ_s X. ZZ_s ) ) z ) ) ) |
| 119 |
|
ovres |
|- ( ( x e. ZZ_s /\ 0s e. ZZ_s ) -> ( x ( +s |` ( ZZ_s X. ZZ_s ) ) 0s ) = ( x +s 0s ) ) |
| 120 |
29 119
|
mpan2 |
|- ( x e. ZZ_s -> ( x ( +s |` ( ZZ_s X. ZZ_s ) ) 0s ) = ( x +s 0s ) ) |
| 121 |
9
|
addsridd |
|- ( x e. ZZ_s -> ( x +s 0s ) = x ) |
| 122 |
120 121
|
eqtrd |
|- ( x e. ZZ_s -> ( x ( +s |` ( ZZ_s X. ZZ_s ) ) 0s ) = x ) |
| 123 |
34 122
|
jca |
|- ( x e. ZZ_s -> ( ( 0s ( +s |` ( ZZ_s X. ZZ_s ) ) x ) = x /\ ( x ( +s |` ( ZZ_s X. ZZ_s ) ) 0s ) = x ) ) |
| 124 |
123
|
rgen |
|- A. x e. ZZ_s ( ( 0s ( +s |` ( ZZ_s X. ZZ_s ) ) x ) = x /\ ( x ( +s |` ( ZZ_s X. ZZ_s ) ) 0s ) = x ) |
| 125 |
|
oveq1 |
|- ( y = 0s -> ( y ( +s |` ( ZZ_s X. ZZ_s ) ) x ) = ( 0s ( +s |` ( ZZ_s X. ZZ_s ) ) x ) ) |
| 126 |
125
|
eqeq1d |
|- ( y = 0s -> ( ( y ( +s |` ( ZZ_s X. ZZ_s ) ) x ) = x <-> ( 0s ( +s |` ( ZZ_s X. ZZ_s ) ) x ) = x ) ) |
| 127 |
126
|
ovanraleqv |
|- ( y = 0s -> ( A. x e. ZZ_s ( ( y ( +s |` ( ZZ_s X. ZZ_s ) ) x ) = x /\ ( x ( +s |` ( ZZ_s X. ZZ_s ) ) y ) = x ) <-> A. x e. ZZ_s ( ( 0s ( +s |` ( ZZ_s X. ZZ_s ) ) x ) = x /\ ( x ( +s |` ( ZZ_s X. ZZ_s ) ) 0s ) = x ) ) ) |
| 128 |
127
|
rspcev |
|- ( ( 0s e. ZZ_s /\ A. x e. ZZ_s ( ( 0s ( +s |` ( ZZ_s X. ZZ_s ) ) x ) = x /\ ( x ( +s |` ( ZZ_s X. ZZ_s ) ) 0s ) = x ) ) -> E. y e. ZZ_s A. x e. ZZ_s ( ( y ( +s |` ( ZZ_s X. ZZ_s ) ) x ) = x /\ ( x ( +s |` ( ZZ_s X. ZZ_s ) ) y ) = x ) ) |
| 129 |
29 124 128
|
mp2an |
|- E. y e. ZZ_s A. x e. ZZ_s ( ( y ( +s |` ( ZZ_s X. ZZ_s ) ) x ) = x /\ ( x ( +s |` ( ZZ_s X. ZZ_s ) ) y ) = x ) |
| 130 |
1 2
|
ismnd |
|- ( K e. Mnd <-> ( A. x e. ZZ_s A. y e. ZZ_s ( ( x ( +s |` ( ZZ_s X. ZZ_s ) ) y ) e. ZZ_s /\ A. z e. ZZ_s ( ( x ( +s |` ( ZZ_s X. ZZ_s ) ) y ) ( +s |` ( ZZ_s X. ZZ_s ) ) z ) = ( x ( +s |` ( ZZ_s X. ZZ_s ) ) ( y ( +s |` ( ZZ_s X. ZZ_s ) ) z ) ) ) /\ E. y e. ZZ_s A. x e. ZZ_s ( ( y ( +s |` ( ZZ_s X. ZZ_s ) ) x ) = x /\ ( x ( +s |` ( ZZ_s X. ZZ_s ) ) y ) = x ) ) ) |
| 131 |
118 129 130
|
mpbir2an |
|- K e. Mnd |
| 132 |
42
|
elexi |
|- K e. _V |
| 133 |
|
slerflex |
|- ( x e. No -> x <_s x ) |
| 134 |
9 133
|
syl |
|- ( x e. ZZ_s -> x <_s x ) |
| 135 |
|
brxp |
|- ( x ( ZZ_s X. ZZ_s ) x <-> ( x e. ZZ_s /\ x e. ZZ_s ) ) |
| 136 |
135
|
biimpri |
|- ( ( x e. ZZ_s /\ x e. ZZ_s ) -> x ( ZZ_s X. ZZ_s ) x ) |
| 137 |
136
|
anidms |
|- ( x e. ZZ_s -> x ( ZZ_s X. ZZ_s ) x ) |
| 138 |
|
brin |
|- ( x ( <_s i^i ( ZZ_s X. ZZ_s ) ) x <-> ( x <_s x /\ x ( ZZ_s X. ZZ_s ) x ) ) |
| 139 |
134 137 138
|
sylanbrc |
|- ( x e. ZZ_s -> x ( <_s i^i ( ZZ_s X. ZZ_s ) ) x ) |
| 140 |
139
|
3ad2ant1 |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> x ( <_s i^i ( ZZ_s X. ZZ_s ) ) x ) |
| 141 |
|
brin |
|- ( x ( <_s i^i ( ZZ_s X. ZZ_s ) ) y <-> ( x <_s y /\ x ( ZZ_s X. ZZ_s ) y ) ) |
| 142 |
|
brxp |
|- ( x ( ZZ_s X. ZZ_s ) y <-> ( x e. ZZ_s /\ y e. ZZ_s ) ) |
| 143 |
142
|
biimpri |
|- ( ( x e. ZZ_s /\ y e. ZZ_s ) -> x ( ZZ_s X. ZZ_s ) y ) |
| 144 |
143
|
3adant3 |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> x ( ZZ_s X. ZZ_s ) y ) |
| 145 |
144
|
biantrud |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( x <_s y <-> ( x <_s y /\ x ( ZZ_s X. ZZ_s ) y ) ) ) |
| 146 |
141 145
|
bitr4id |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( x ( <_s i^i ( ZZ_s X. ZZ_s ) ) y <-> x <_s y ) ) |
| 147 |
|
brin |
|- ( y ( <_s i^i ( ZZ_s X. ZZ_s ) ) x <-> ( y <_s x /\ y ( ZZ_s X. ZZ_s ) x ) ) |
| 148 |
|
brxp |
|- ( y ( ZZ_s X. ZZ_s ) x <-> ( y e. ZZ_s /\ x e. ZZ_s ) ) |
| 149 |
148
|
biimpri |
|- ( ( y e. ZZ_s /\ x e. ZZ_s ) -> y ( ZZ_s X. ZZ_s ) x ) |
| 150 |
149
|
ancoms |
|- ( ( x e. ZZ_s /\ y e. ZZ_s ) -> y ( ZZ_s X. ZZ_s ) x ) |
| 151 |
150
|
biantrud |
|- ( ( x e. ZZ_s /\ y e. ZZ_s ) -> ( y <_s x <-> ( y <_s x /\ y ( ZZ_s X. ZZ_s ) x ) ) ) |
| 152 |
147 151
|
bitr4id |
|- ( ( x e. ZZ_s /\ y e. ZZ_s ) -> ( y ( <_s i^i ( ZZ_s X. ZZ_s ) ) x <-> y <_s x ) ) |
| 153 |
152
|
3adant3 |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( y ( <_s i^i ( ZZ_s X. ZZ_s ) ) x <-> y <_s x ) ) |
| 154 |
146 153
|
anbi12d |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( ( x ( <_s i^i ( ZZ_s X. ZZ_s ) ) y /\ y ( <_s i^i ( ZZ_s X. ZZ_s ) ) x ) <-> ( x <_s y /\ y <_s x ) ) ) |
| 155 |
|
sletri3 |
|- ( ( x e. No /\ y e. No ) -> ( x = y <-> ( x <_s y /\ y <_s x ) ) ) |
| 156 |
9 10 155
|
syl2an |
|- ( ( x e. ZZ_s /\ y e. ZZ_s ) -> ( x = y <-> ( x <_s y /\ y <_s x ) ) ) |
| 157 |
156
|
3adant3 |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( x = y <-> ( x <_s y /\ y <_s x ) ) ) |
| 158 |
157
|
biimprd |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( ( x <_s y /\ y <_s x ) -> x = y ) ) |
| 159 |
154 158
|
sylbid |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( ( x ( <_s i^i ( ZZ_s X. ZZ_s ) ) y /\ y ( <_s i^i ( ZZ_s X. ZZ_s ) ) x ) -> x = y ) ) |
| 160 |
|
sletr |
|- ( ( x e. No /\ y e. No /\ z e. No ) -> ( ( x <_s y /\ y <_s z ) -> x <_s z ) ) |
| 161 |
9 10 11 160
|
syl3an |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( ( x <_s y /\ y <_s z ) -> x <_s z ) ) |
| 162 |
143
|
biantrud |
|- ( ( x e. ZZ_s /\ y e. ZZ_s ) -> ( x <_s y <-> ( x <_s y /\ x ( ZZ_s X. ZZ_s ) y ) ) ) |
| 163 |
141 162
|
bitr4id |
|- ( ( x e. ZZ_s /\ y e. ZZ_s ) -> ( x ( <_s i^i ( ZZ_s X. ZZ_s ) ) y <-> x <_s y ) ) |
| 164 |
163
|
3adant3 |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( x ( <_s i^i ( ZZ_s X. ZZ_s ) ) y <-> x <_s y ) ) |
| 165 |
|
brin |
|- ( y ( <_s i^i ( ZZ_s X. ZZ_s ) ) z <-> ( y <_s z /\ y ( ZZ_s X. ZZ_s ) z ) ) |
| 166 |
|
brxp |
|- ( y ( ZZ_s X. ZZ_s ) z <-> ( y e. ZZ_s /\ z e. ZZ_s ) ) |
| 167 |
166
|
biimpri |
|- ( ( y e. ZZ_s /\ z e. ZZ_s ) -> y ( ZZ_s X. ZZ_s ) z ) |
| 168 |
167
|
3adant1 |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> y ( ZZ_s X. ZZ_s ) z ) |
| 169 |
168
|
biantrud |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( y <_s z <-> ( y <_s z /\ y ( ZZ_s X. ZZ_s ) z ) ) ) |
| 170 |
165 169
|
bitr4id |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( y ( <_s i^i ( ZZ_s X. ZZ_s ) ) z <-> y <_s z ) ) |
| 171 |
164 170
|
anbi12d |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( ( x ( <_s i^i ( ZZ_s X. ZZ_s ) ) y /\ y ( <_s i^i ( ZZ_s X. ZZ_s ) ) z ) <-> ( x <_s y /\ y <_s z ) ) ) |
| 172 |
|
brin |
|- ( x ( <_s i^i ( ZZ_s X. ZZ_s ) ) z <-> ( x <_s z /\ x ( ZZ_s X. ZZ_s ) z ) ) |
| 173 |
|
brxp |
|- ( x ( ZZ_s X. ZZ_s ) z <-> ( x e. ZZ_s /\ z e. ZZ_s ) ) |
| 174 |
173
|
biimpri |
|- ( ( x e. ZZ_s /\ z e. ZZ_s ) -> x ( ZZ_s X. ZZ_s ) z ) |
| 175 |
174
|
3adant2 |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> x ( ZZ_s X. ZZ_s ) z ) |
| 176 |
175
|
biantrud |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( x <_s z <-> ( x <_s z /\ x ( ZZ_s X. ZZ_s ) z ) ) ) |
| 177 |
172 176
|
bitr4id |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( x ( <_s i^i ( ZZ_s X. ZZ_s ) ) z <-> x <_s z ) ) |
| 178 |
161 171 177
|
3imtr4d |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( ( x ( <_s i^i ( ZZ_s X. ZZ_s ) ) y /\ y ( <_s i^i ( ZZ_s X. ZZ_s ) ) z ) -> x ( <_s i^i ( ZZ_s X. ZZ_s ) ) z ) ) |
| 179 |
140 159 178
|
3jca |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( x ( <_s i^i ( ZZ_s X. ZZ_s ) ) x /\ ( ( x ( <_s i^i ( ZZ_s X. ZZ_s ) ) y /\ y ( <_s i^i ( ZZ_s X. ZZ_s ) ) x ) -> x = y ) /\ ( ( x ( <_s i^i ( ZZ_s X. ZZ_s ) ) y /\ y ( <_s i^i ( ZZ_s X. ZZ_s ) ) z ) -> x ( <_s i^i ( ZZ_s X. ZZ_s ) ) z ) ) ) |
| 180 |
179
|
rgen3 |
|- A. x e. ZZ_s A. y e. ZZ_s A. z e. ZZ_s ( x ( <_s i^i ( ZZ_s X. ZZ_s ) ) x /\ ( ( x ( <_s i^i ( ZZ_s X. ZZ_s ) ) y /\ y ( <_s i^i ( ZZ_s X. ZZ_s ) ) x ) -> x = y ) /\ ( ( x ( <_s i^i ( ZZ_s X. ZZ_s ) ) y /\ y ( <_s i^i ( ZZ_s X. ZZ_s ) ) z ) -> x ( <_s i^i ( ZZ_s X. ZZ_s ) ) z ) ) |
| 181 |
1 4
|
ispos |
|- ( K e. Poset <-> ( K e. _V /\ A. x e. ZZ_s A. y e. ZZ_s A. z e. ZZ_s ( x ( <_s i^i ( ZZ_s X. ZZ_s ) ) x /\ ( ( x ( <_s i^i ( ZZ_s X. ZZ_s ) ) y /\ y ( <_s i^i ( ZZ_s X. ZZ_s ) ) x ) -> x = y ) /\ ( ( x ( <_s i^i ( ZZ_s X. ZZ_s ) ) y /\ y ( <_s i^i ( ZZ_s X. ZZ_s ) ) z ) -> x ( <_s i^i ( ZZ_s X. ZZ_s ) ) z ) ) ) ) |
| 182 |
132 180 181
|
mpbir2an |
|- K e. Poset |
| 183 |
|
sletric |
|- ( ( x e. No /\ y e. No ) -> ( x <_s y \/ y <_s x ) ) |
| 184 |
9 10 183
|
syl2an |
|- ( ( x e. ZZ_s /\ y e. ZZ_s ) -> ( x <_s y \/ y <_s x ) ) |
| 185 |
163 152
|
orbi12d |
|- ( ( x e. ZZ_s /\ y e. ZZ_s ) -> ( ( x ( <_s i^i ( ZZ_s X. ZZ_s ) ) y \/ y ( <_s i^i ( ZZ_s X. ZZ_s ) ) x ) <-> ( x <_s y \/ y <_s x ) ) ) |
| 186 |
184 185
|
mpbird |
|- ( ( x e. ZZ_s /\ y e. ZZ_s ) -> ( x ( <_s i^i ( ZZ_s X. ZZ_s ) ) y \/ y ( <_s i^i ( ZZ_s X. ZZ_s ) ) x ) ) |
| 187 |
186
|
rgen2 |
|- A. x e. ZZ_s A. y e. ZZ_s ( x ( <_s i^i ( ZZ_s X. ZZ_s ) ) y \/ y ( <_s i^i ( ZZ_s X. ZZ_s ) ) x ) |
| 188 |
1 4
|
istos |
|- ( K e. Toset <-> ( K e. Poset /\ A. x e. ZZ_s A. y e. ZZ_s ( x ( <_s i^i ( ZZ_s X. ZZ_s ) ) y \/ y ( <_s i^i ( ZZ_s X. ZZ_s ) ) x ) ) ) |
| 189 |
182 187 188
|
mpbir2an |
|- K e. Toset |
| 190 |
|
sleadd1 |
|- ( ( x e. No /\ y e. No /\ z e. No ) -> ( x <_s y <-> ( x +s z ) <_s ( y +s z ) ) ) |
| 191 |
9 10 11 190
|
syl3an |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( x <_s y <-> ( x +s z ) <_s ( y +s z ) ) ) |
| 192 |
191
|
biimpd |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( x <_s y -> ( x +s z ) <_s ( y +s z ) ) ) |
| 193 |
23 17
|
ovresd |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( x ( +s |` ( ZZ_s X. ZZ_s ) ) z ) = ( x +s z ) ) |
| 194 |
52 17
|
ovresd |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( y ( +s |` ( ZZ_s X. ZZ_s ) ) z ) = ( y +s z ) ) |
| 195 |
193 194
|
breq12d |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( ( x ( +s |` ( ZZ_s X. ZZ_s ) ) z ) ( <_s i^i ( ZZ_s X. ZZ_s ) ) ( y ( +s |` ( ZZ_s X. ZZ_s ) ) z ) <-> ( x +s z ) ( <_s i^i ( ZZ_s X. ZZ_s ) ) ( y +s z ) ) ) |
| 196 |
|
brin |
|- ( ( x +s z ) ( <_s i^i ( ZZ_s X. ZZ_s ) ) ( y +s z ) <-> ( ( x +s z ) <_s ( y +s z ) /\ ( x +s z ) ( ZZ_s X. ZZ_s ) ( y +s z ) ) ) |
| 197 |
|
zaddscl |
|- ( ( x e. ZZ_s /\ z e. ZZ_s ) -> ( x +s z ) e. ZZ_s ) |
| 198 |
197
|
3adant2 |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( x +s z ) e. ZZ_s ) |
| 199 |
|
brxp |
|- ( ( x +s z ) ( ZZ_s X. ZZ_s ) ( y +s z ) <-> ( ( x +s z ) e. ZZ_s /\ ( y +s z ) e. ZZ_s ) ) |
| 200 |
198 25 199
|
sylanbrc |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( x +s z ) ( ZZ_s X. ZZ_s ) ( y +s z ) ) |
| 201 |
200
|
biantrud |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( ( x +s z ) <_s ( y +s z ) <-> ( ( x +s z ) <_s ( y +s z ) /\ ( x +s z ) ( ZZ_s X. ZZ_s ) ( y +s z ) ) ) ) |
| 202 |
196 201
|
bitr4id |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( ( x +s z ) ( <_s i^i ( ZZ_s X. ZZ_s ) ) ( y +s z ) <-> ( x +s z ) <_s ( y +s z ) ) ) |
| 203 |
195 202
|
bitrd |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( ( x ( +s |` ( ZZ_s X. ZZ_s ) ) z ) ( <_s i^i ( ZZ_s X. ZZ_s ) ) ( y ( +s |` ( ZZ_s X. ZZ_s ) ) z ) <-> ( x +s z ) <_s ( y +s z ) ) ) |
| 204 |
192 146 203
|
3imtr4d |
|- ( ( x e. ZZ_s /\ y e. ZZ_s /\ z e. ZZ_s ) -> ( x ( <_s i^i ( ZZ_s X. ZZ_s ) ) y -> ( x ( +s |` ( ZZ_s X. ZZ_s ) ) z ) ( <_s i^i ( ZZ_s X. ZZ_s ) ) ( y ( +s |` ( ZZ_s X. ZZ_s ) ) z ) ) ) |
| 205 |
204
|
rgen3 |
|- A. x e. ZZ_s A. y e. ZZ_s A. z e. ZZ_s ( x ( <_s i^i ( ZZ_s X. ZZ_s ) ) y -> ( x ( +s |` ( ZZ_s X. ZZ_s ) ) z ) ( <_s i^i ( ZZ_s X. ZZ_s ) ) ( y ( +s |` ( ZZ_s X. ZZ_s ) ) z ) ) |
| 206 |
1 2 4
|
isomnd |
|- ( K e. oMnd <-> ( K e. Mnd /\ K e. Toset /\ A. x e. ZZ_s A. y e. ZZ_s A. z e. ZZ_s ( x ( <_s i^i ( ZZ_s X. ZZ_s ) ) y -> ( x ( +s |` ( ZZ_s X. ZZ_s ) ) z ) ( <_s i^i ( ZZ_s X. ZZ_s ) ) ( y ( +s |` ( ZZ_s X. ZZ_s ) ) z ) ) ) ) |
| 207 |
131 189 205 206
|
mpbir3an |
|- K e. oMnd |
| 208 |
|
isogrp |
|- ( K e. oGrp <-> ( K e. Grp /\ K e. oMnd ) ) |
| 209 |
42 207 208
|
mpbir2an |
|- K e. oGrp |
| 210 |
|
simplr |
|- ( ( ( 0s <_s x /\ x e. ZZ_s ) /\ ( 0s <_s y /\ y e. ZZ_s ) ) -> x e. ZZ_s ) |
| 211 |
210
|
znod |
|- ( ( ( 0s <_s x /\ x e. ZZ_s ) /\ ( 0s <_s y /\ y e. ZZ_s ) ) -> x e. No ) |
| 212 |
|
simprr |
|- ( ( ( 0s <_s x /\ x e. ZZ_s ) /\ ( 0s <_s y /\ y e. ZZ_s ) ) -> y e. ZZ_s ) |
| 213 |
212
|
znod |
|- ( ( ( 0s <_s x /\ x e. ZZ_s ) /\ ( 0s <_s y /\ y e. ZZ_s ) ) -> y e. No ) |
| 214 |
|
simpll |
|- ( ( ( 0s <_s x /\ x e. ZZ_s ) /\ ( 0s <_s y /\ y e. ZZ_s ) ) -> 0s <_s x ) |
| 215 |
|
simprl |
|- ( ( ( 0s <_s x /\ x e. ZZ_s ) /\ ( 0s <_s y /\ y e. ZZ_s ) ) -> 0s <_s y ) |
| 216 |
211 213 214 215
|
mulsge0d |
|- ( ( ( 0s <_s x /\ x e. ZZ_s ) /\ ( 0s <_s y /\ y e. ZZ_s ) ) -> 0s <_s ( x x.s y ) ) |
| 217 |
210 212
|
ovresd |
|- ( ( ( 0s <_s x /\ x e. ZZ_s ) /\ ( 0s <_s y /\ y e. ZZ_s ) ) -> ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) = ( x x.s y ) ) |
| 218 |
216 217
|
breqtrrd |
|- ( ( ( 0s <_s x /\ x e. ZZ_s ) /\ ( 0s <_s y /\ y e. ZZ_s ) ) -> 0s <_s ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) ) |
| 219 |
210 212
|
zmulscld |
|- ( ( ( 0s <_s x /\ x e. ZZ_s ) /\ ( 0s <_s y /\ y e. ZZ_s ) ) -> ( x x.s y ) e. ZZ_s ) |
| 220 |
217 219
|
eqeltrd |
|- ( ( ( 0s <_s x /\ x e. ZZ_s ) /\ ( 0s <_s y /\ y e. ZZ_s ) ) -> ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) e. ZZ_s ) |
| 221 |
218 220
|
jca |
|- ( ( ( 0s <_s x /\ x e. ZZ_s ) /\ ( 0s <_s y /\ y e. ZZ_s ) ) -> ( 0s <_s ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) /\ ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) e. ZZ_s ) ) |
| 222 |
|
brin |
|- ( 0s ( <_s i^i ( ZZ_s X. ZZ_s ) ) x <-> ( 0s <_s x /\ 0s ( ZZ_s X. ZZ_s ) x ) ) |
| 223 |
|
brxp |
|- ( 0s ( ZZ_s X. ZZ_s ) x <-> ( 0s e. ZZ_s /\ x e. ZZ_s ) ) |
| 224 |
29 223
|
mpbiran |
|- ( 0s ( ZZ_s X. ZZ_s ) x <-> x e. ZZ_s ) |
| 225 |
224
|
anbi2i |
|- ( ( 0s <_s x /\ 0s ( ZZ_s X. ZZ_s ) x ) <-> ( 0s <_s x /\ x e. ZZ_s ) ) |
| 226 |
222 225
|
bitri |
|- ( 0s ( <_s i^i ( ZZ_s X. ZZ_s ) ) x <-> ( 0s <_s x /\ x e. ZZ_s ) ) |
| 227 |
|
brin |
|- ( 0s ( <_s i^i ( ZZ_s X. ZZ_s ) ) y <-> ( 0s <_s y /\ 0s ( ZZ_s X. ZZ_s ) y ) ) |
| 228 |
|
brxp |
|- ( 0s ( ZZ_s X. ZZ_s ) y <-> ( 0s e. ZZ_s /\ y e. ZZ_s ) ) |
| 229 |
29 228
|
mpbiran |
|- ( 0s ( ZZ_s X. ZZ_s ) y <-> y e. ZZ_s ) |
| 230 |
229
|
anbi2i |
|- ( ( 0s <_s y /\ 0s ( ZZ_s X. ZZ_s ) y ) <-> ( 0s <_s y /\ y e. ZZ_s ) ) |
| 231 |
227 230
|
bitri |
|- ( 0s ( <_s i^i ( ZZ_s X. ZZ_s ) ) y <-> ( 0s <_s y /\ y e. ZZ_s ) ) |
| 232 |
226 231
|
anbi12i |
|- ( ( 0s ( <_s i^i ( ZZ_s X. ZZ_s ) ) x /\ 0s ( <_s i^i ( ZZ_s X. ZZ_s ) ) y ) <-> ( ( 0s <_s x /\ x e. ZZ_s ) /\ ( 0s <_s y /\ y e. ZZ_s ) ) ) |
| 233 |
|
brin |
|- ( 0s ( <_s i^i ( ZZ_s X. ZZ_s ) ) ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) <-> ( 0s <_s ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) /\ 0s ( ZZ_s X. ZZ_s ) ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) ) ) |
| 234 |
|
brxp |
|- ( 0s ( ZZ_s X. ZZ_s ) ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) <-> ( 0s e. ZZ_s /\ ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) e. ZZ_s ) ) |
| 235 |
29 234
|
mpbiran |
|- ( 0s ( ZZ_s X. ZZ_s ) ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) <-> ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) e. ZZ_s ) |
| 236 |
235
|
anbi2i |
|- ( ( 0s <_s ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) /\ 0s ( ZZ_s X. ZZ_s ) ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) ) <-> ( 0s <_s ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) /\ ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) e. ZZ_s ) ) |
| 237 |
233 236
|
bitri |
|- ( 0s ( <_s i^i ( ZZ_s X. ZZ_s ) ) ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) <-> ( 0s <_s ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) /\ ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) e. ZZ_s ) ) |
| 238 |
221 232 237
|
3imtr4i |
|- ( ( 0s ( <_s i^i ( ZZ_s X. ZZ_s ) ) x /\ 0s ( <_s i^i ( ZZ_s X. ZZ_s ) ) y ) -> 0s ( <_s i^i ( ZZ_s X. ZZ_s ) ) ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) ) |
| 239 |
238
|
rgen2w |
|- A. x e. ZZ_s A. y e. ZZ_s ( ( 0s ( <_s i^i ( ZZ_s X. ZZ_s ) ) x /\ 0s ( <_s i^i ( ZZ_s X. ZZ_s ) ) y ) -> 0s ( <_s i^i ( ZZ_s X. ZZ_s ) ) ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) ) |
| 240 |
1 5 3 4
|
isorng |
|- ( K e. oRing <-> ( K e. Ring /\ K e. oGrp /\ A. x e. ZZ_s A. y e. ZZ_s ( ( 0s ( <_s i^i ( ZZ_s X. ZZ_s ) ) x /\ 0s ( <_s i^i ( ZZ_s X. ZZ_s ) ) y ) -> 0s ( <_s i^i ( ZZ_s X. ZZ_s ) ) ( x ( x.s |` ( ZZ_s X. ZZ_s ) ) y ) ) ) ) |
| 241 |
114 209 239 240
|
mpbir3an |
|- K e. oRing |