| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zsoring.1 |
⊢ ℤs = ( Base ‘ 𝐾 ) |
| 2 |
|
zsoring.2 |
⊢ ( +s ↾ ( ℤs × ℤs ) ) = ( +g ‘ 𝐾 ) |
| 3 |
|
zsoring.3 |
⊢ ( ·s ↾ ( ℤs × ℤs ) ) = ( .r ‘ 𝐾 ) |
| 4 |
|
zsoring.4 |
⊢ ( ≤s ∩ ( ℤs × ℤs ) ) = ( le ‘ 𝐾 ) |
| 5 |
|
zsoring.5 |
⊢ 0s = ( 0g ‘ 𝐾 ) |
| 6 |
|
ovres |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ) → ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) 𝑦 ) = ( 𝑥 +s 𝑦 ) ) |
| 7 |
|
zaddscl |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ) → ( 𝑥 +s 𝑦 ) ∈ ℤs ) |
| 8 |
6 7
|
eqeltrd |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ) → ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) 𝑦 ) ∈ ℤs ) |
| 9 |
|
zno |
⊢ ( 𝑥 ∈ ℤs → 𝑥 ∈ No ) |
| 10 |
|
zno |
⊢ ( 𝑦 ∈ ℤs → 𝑦 ∈ No ) |
| 11 |
|
zno |
⊢ ( 𝑧 ∈ ℤs → 𝑧 ∈ No ) |
| 12 |
|
addsass |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) → ( ( 𝑥 +s 𝑦 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦 +s 𝑧 ) ) ) |
| 13 |
9 10 11 12
|
syl3an |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( ( 𝑥 +s 𝑦 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦 +s 𝑧 ) ) ) |
| 14 |
6
|
3adant3 |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) 𝑦 ) = ( 𝑥 +s 𝑦 ) ) |
| 15 |
14
|
oveq1d |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) 𝑦 ) ( +s ↾ ( ℤs × ℤs ) ) 𝑧 ) = ( ( 𝑥 +s 𝑦 ) ( +s ↾ ( ℤs × ℤs ) ) 𝑧 ) ) |
| 16 |
7
|
3adant3 |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑥 +s 𝑦 ) ∈ ℤs ) |
| 17 |
|
simp3 |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → 𝑧 ∈ ℤs ) |
| 18 |
16 17
|
ovresd |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( ( 𝑥 +s 𝑦 ) ( +s ↾ ( ℤs × ℤs ) ) 𝑧 ) = ( ( 𝑥 +s 𝑦 ) +s 𝑧 ) ) |
| 19 |
15 18
|
eqtrd |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) 𝑦 ) ( +s ↾ ( ℤs × ℤs ) ) 𝑧 ) = ( ( 𝑥 +s 𝑦 ) +s 𝑧 ) ) |
| 20 |
|
ovres |
⊢ ( ( 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑦 ( +s ↾ ( ℤs × ℤs ) ) 𝑧 ) = ( 𝑦 +s 𝑧 ) ) |
| 21 |
20
|
3adant1 |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑦 ( +s ↾ ( ℤs × ℤs ) ) 𝑧 ) = ( 𝑦 +s 𝑧 ) ) |
| 22 |
21
|
oveq2d |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) ( 𝑦 ( +s ↾ ( ℤs × ℤs ) ) 𝑧 ) ) = ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) ( 𝑦 +s 𝑧 ) ) ) |
| 23 |
|
simp1 |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → 𝑥 ∈ ℤs ) |
| 24 |
|
zaddscl |
⊢ ( ( 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑦 +s 𝑧 ) ∈ ℤs ) |
| 25 |
24
|
3adant1 |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑦 +s 𝑧 ) ∈ ℤs ) |
| 26 |
23 25
|
ovresd |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) ( 𝑦 +s 𝑧 ) ) = ( 𝑥 +s ( 𝑦 +s 𝑧 ) ) ) |
| 27 |
22 26
|
eqtrd |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) ( 𝑦 ( +s ↾ ( ℤs × ℤs ) ) 𝑧 ) ) = ( 𝑥 +s ( 𝑦 +s 𝑧 ) ) ) |
| 28 |
13 19 27
|
3eqtr4d |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) 𝑦 ) ( +s ↾ ( ℤs × ℤs ) ) 𝑧 ) = ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) ( 𝑦 ( +s ↾ ( ℤs × ℤs ) ) 𝑧 ) ) ) |
| 29 |
|
0zs |
⊢ 0s ∈ ℤs |
| 30 |
|
ovres |
⊢ ( ( 0s ∈ ℤs ∧ 𝑥 ∈ ℤs ) → ( 0s ( +s ↾ ( ℤs × ℤs ) ) 𝑥 ) = ( 0s +s 𝑥 ) ) |
| 31 |
29 30
|
mpan |
⊢ ( 𝑥 ∈ ℤs → ( 0s ( +s ↾ ( ℤs × ℤs ) ) 𝑥 ) = ( 0s +s 𝑥 ) ) |
| 32 |
|
addslid |
⊢ ( 𝑥 ∈ No → ( 0s +s 𝑥 ) = 𝑥 ) |
| 33 |
9 32
|
syl |
⊢ ( 𝑥 ∈ ℤs → ( 0s +s 𝑥 ) = 𝑥 ) |
| 34 |
31 33
|
eqtrd |
⊢ ( 𝑥 ∈ ℤs → ( 0s ( +s ↾ ( ℤs × ℤs ) ) 𝑥 ) = 𝑥 ) |
| 35 |
|
znegscl |
⊢ ( 𝑥 ∈ ℤs → ( -us ‘ 𝑥 ) ∈ ℤs ) |
| 36 |
|
id |
⊢ ( 𝑥 ∈ ℤs → 𝑥 ∈ ℤs ) |
| 37 |
35 36
|
ovresd |
⊢ ( 𝑥 ∈ ℤs → ( ( -us ‘ 𝑥 ) ( +s ↾ ( ℤs × ℤs ) ) 𝑥 ) = ( ( -us ‘ 𝑥 ) +s 𝑥 ) ) |
| 38 |
35
|
znod |
⊢ ( 𝑥 ∈ ℤs → ( -us ‘ 𝑥 ) ∈ No ) |
| 39 |
38 9
|
addscomd |
⊢ ( 𝑥 ∈ ℤs → ( ( -us ‘ 𝑥 ) +s 𝑥 ) = ( 𝑥 +s ( -us ‘ 𝑥 ) ) ) |
| 40 |
9
|
negsidd |
⊢ ( 𝑥 ∈ ℤs → ( 𝑥 +s ( -us ‘ 𝑥 ) ) = 0s ) |
| 41 |
37 39 40
|
3eqtrd |
⊢ ( 𝑥 ∈ ℤs → ( ( -us ‘ 𝑥 ) ( +s ↾ ( ℤs × ℤs ) ) 𝑥 ) = 0s ) |
| 42 |
1 2 8 28 29 34 35 41
|
isgrpi |
⊢ 𝐾 ∈ Grp |
| 43 |
|
ovres |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ) → ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) = ( 𝑥 ·s 𝑦 ) ) |
| 44 |
|
simpl |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ) → 𝑥 ∈ ℤs ) |
| 45 |
|
simpr |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ) → 𝑦 ∈ ℤs ) |
| 46 |
44 45
|
zmulscld |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ) → ( 𝑥 ·s 𝑦 ) ∈ ℤs ) |
| 47 |
43 46
|
eqeltrd |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ) → ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) ∈ ℤs ) |
| 48 |
|
mulsass |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) → ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) ) |
| 49 |
9 10 11 48
|
syl3an |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) ) |
| 50 |
43
|
3adant3 |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) = ( 𝑥 ·s 𝑦 ) ) |
| 51 |
50
|
oveq1d |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) = ( ( 𝑥 ·s 𝑦 ) ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) ) |
| 52 |
|
simp2 |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → 𝑦 ∈ ℤs ) |
| 53 |
23 52
|
zmulscld |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑥 ·s 𝑦 ) ∈ ℤs ) |
| 54 |
53 17
|
ovresd |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( ( 𝑥 ·s 𝑦 ) ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) = ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) |
| 55 |
51 54
|
eqtrd |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) = ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) |
| 56 |
|
ovres |
⊢ ( ( 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑦 ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) = ( 𝑦 ·s 𝑧 ) ) |
| 57 |
56
|
3adant1 |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑦 ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) = ( 𝑦 ·s 𝑧 ) ) |
| 58 |
57
|
oveq2d |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) ( 𝑦 ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) ) = ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) ( 𝑦 ·s 𝑧 ) ) ) |
| 59 |
52 17
|
zmulscld |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑦 ·s 𝑧 ) ∈ ℤs ) |
| 60 |
23 59
|
ovresd |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) ( 𝑦 ·s 𝑧 ) ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) ) |
| 61 |
58 60
|
eqtrd |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) ( 𝑦 ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) ) |
| 62 |
49 55 61
|
3eqtr4d |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) = ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) ( 𝑦 ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) ) ) |
| 63 |
62
|
3expa |
⊢ ( ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ) ∧ 𝑧 ∈ ℤs ) → ( ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) = ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) ( 𝑦 ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) ) ) |
| 64 |
63
|
ralrimiva |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ) → ∀ 𝑧 ∈ ℤs ( ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) = ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) ( 𝑦 ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) ) ) |
| 65 |
47 64
|
jca |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ) → ( ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) ∈ ℤs ∧ ∀ 𝑧 ∈ ℤs ( ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) = ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) ( 𝑦 ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) ) ) ) |
| 66 |
65
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℤs ∀ 𝑦 ∈ ℤs ( ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) ∈ ℤs ∧ ∀ 𝑧 ∈ ℤs ( ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) = ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) ( 𝑦 ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) ) ) |
| 67 |
|
1zs |
⊢ 1s ∈ ℤs |
| 68 |
|
ovres |
⊢ ( ( 1s ∈ ℤs ∧ 𝑥 ∈ ℤs ) → ( 1s ( ·s ↾ ( ℤs × ℤs ) ) 𝑥 ) = ( 1s ·s 𝑥 ) ) |
| 69 |
67 68
|
mpan |
⊢ ( 𝑥 ∈ ℤs → ( 1s ( ·s ↾ ( ℤs × ℤs ) ) 𝑥 ) = ( 1s ·s 𝑥 ) ) |
| 70 |
9
|
mulslidd |
⊢ ( 𝑥 ∈ ℤs → ( 1s ·s 𝑥 ) = 𝑥 ) |
| 71 |
69 70
|
eqtrd |
⊢ ( 𝑥 ∈ ℤs → ( 1s ( ·s ↾ ( ℤs × ℤs ) ) 𝑥 ) = 𝑥 ) |
| 72 |
|
ovres |
⊢ ( ( 𝑥 ∈ ℤs ∧ 1s ∈ ℤs ) → ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 1s ) = ( 𝑥 ·s 1s ) ) |
| 73 |
67 72
|
mpan2 |
⊢ ( 𝑥 ∈ ℤs → ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 1s ) = ( 𝑥 ·s 1s ) ) |
| 74 |
9
|
mulsridd |
⊢ ( 𝑥 ∈ ℤs → ( 𝑥 ·s 1s ) = 𝑥 ) |
| 75 |
73 74
|
eqtrd |
⊢ ( 𝑥 ∈ ℤs → ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 1s ) = 𝑥 ) |
| 76 |
71 75
|
jca |
⊢ ( 𝑥 ∈ ℤs → ( ( 1s ( ·s ↾ ( ℤs × ℤs ) ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 1s ) = 𝑥 ) ) |
| 77 |
76
|
rgen |
⊢ ∀ 𝑥 ∈ ℤs ( ( 1s ( ·s ↾ ( ℤs × ℤs ) ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 1s ) = 𝑥 ) |
| 78 |
|
oveq1 |
⊢ ( 𝑦 = 1s → ( 𝑦 ( ·s ↾ ( ℤs × ℤs ) ) 𝑥 ) = ( 1s ( ·s ↾ ( ℤs × ℤs ) ) 𝑥 ) ) |
| 79 |
78
|
eqeq1d |
⊢ ( 𝑦 = 1s → ( ( 𝑦 ( ·s ↾ ( ℤs × ℤs ) ) 𝑥 ) = 𝑥 ↔ ( 1s ( ·s ↾ ( ℤs × ℤs ) ) 𝑥 ) = 𝑥 ) ) |
| 80 |
79
|
ovanraleqv |
⊢ ( 𝑦 = 1s → ( ∀ 𝑥 ∈ ℤs ( ( 𝑦 ( ·s ↾ ( ℤs × ℤs ) ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ ℤs ( ( 1s ( ·s ↾ ( ℤs × ℤs ) ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 1s ) = 𝑥 ) ) ) |
| 81 |
80
|
rspcev |
⊢ ( ( 1s ∈ ℤs ∧ ∀ 𝑥 ∈ ℤs ( ( 1s ( ·s ↾ ( ℤs × ℤs ) ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 1s ) = 𝑥 ) ) → ∃ 𝑦 ∈ ℤs ∀ 𝑥 ∈ ℤs ( ( 𝑦 ( ·s ↾ ( ℤs × ℤs ) ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) = 𝑥 ) ) |
| 82 |
67 77 81
|
mp2an |
⊢ ∃ 𝑦 ∈ ℤs ∀ 𝑥 ∈ ℤs ( ( 𝑦 ( ·s ↾ ( ℤs × ℤs ) ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) = 𝑥 ) |
| 83 |
|
eqid |
⊢ ( mulGrp ‘ 𝐾 ) = ( mulGrp ‘ 𝐾 ) |
| 84 |
83 1
|
mgpbas |
⊢ ℤs = ( Base ‘ ( mulGrp ‘ 𝐾 ) ) |
| 85 |
83 3
|
mgpplusg |
⊢ ( ·s ↾ ( ℤs × ℤs ) ) = ( +g ‘ ( mulGrp ‘ 𝐾 ) ) |
| 86 |
84 85
|
ismnd |
⊢ ( ( mulGrp ‘ 𝐾 ) ∈ Mnd ↔ ( ∀ 𝑥 ∈ ℤs ∀ 𝑦 ∈ ℤs ( ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) ∈ ℤs ∧ ∀ 𝑧 ∈ ℤs ( ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) = ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) ( 𝑦 ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) ) ) ∧ ∃ 𝑦 ∈ ℤs ∀ 𝑥 ∈ ℤs ( ( 𝑦 ( ·s ↾ ( ℤs × ℤs ) ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) = 𝑥 ) ) ) |
| 87 |
66 82 86
|
mpbir2an |
⊢ ( mulGrp ‘ 𝐾 ) ∈ Mnd |
| 88 |
|
addsdi |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) → ( 𝑥 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧 ) ) ) |
| 89 |
9 10 11 88
|
syl3an |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑥 ·s ( 𝑦 +s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧 ) ) ) |
| 90 |
21
|
oveq2d |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) ( 𝑦 ( +s ↾ ( ℤs × ℤs ) ) 𝑧 ) ) = ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) ( 𝑦 +s 𝑧 ) ) ) |
| 91 |
23 25
|
ovresd |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) ( 𝑦 +s 𝑧 ) ) = ( 𝑥 ·s ( 𝑦 +s 𝑧 ) ) ) |
| 92 |
90 91
|
eqtrd |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) ( 𝑦 ( +s ↾ ( ℤs × ℤs ) ) 𝑧 ) ) = ( 𝑥 ·s ( 𝑦 +s 𝑧 ) ) ) |
| 93 |
|
ovres |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) = ( 𝑥 ·s 𝑧 ) ) |
| 94 |
93
|
3adant2 |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) = ( 𝑥 ·s 𝑧 ) ) |
| 95 |
50 94
|
oveq12d |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) ( +s ↾ ( ℤs × ℤs ) ) ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) ) = ( ( 𝑥 ·s 𝑦 ) ( +s ↾ ( ℤs × ℤs ) ) ( 𝑥 ·s 𝑧 ) ) ) |
| 96 |
23 17
|
zmulscld |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑥 ·s 𝑧 ) ∈ ℤs ) |
| 97 |
53 96
|
ovresd |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( ( 𝑥 ·s 𝑦 ) ( +s ↾ ( ℤs × ℤs ) ) ( 𝑥 ·s 𝑧 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧 ) ) ) |
| 98 |
95 97
|
eqtrd |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) ( +s ↾ ( ℤs × ℤs ) ) ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) ) = ( ( 𝑥 ·s 𝑦 ) +s ( 𝑥 ·s 𝑧 ) ) ) |
| 99 |
89 92 98
|
3eqtr4d |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) ( 𝑦 ( +s ↾ ( ℤs × ℤs ) ) 𝑧 ) ) = ( ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) ( +s ↾ ( ℤs × ℤs ) ) ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) ) ) |
| 100 |
23
|
znod |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → 𝑥 ∈ No ) |
| 101 |
52
|
znod |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → 𝑦 ∈ No ) |
| 102 |
17
|
znod |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → 𝑧 ∈ No ) |
| 103 |
100 101 102
|
addsdird |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( ( 𝑥 +s 𝑦 ) ·s 𝑧 ) = ( ( 𝑥 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧 ) ) ) |
| 104 |
14
|
oveq1d |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) 𝑦 ) ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) = ( ( 𝑥 +s 𝑦 ) ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) ) |
| 105 |
16 17
|
ovresd |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( ( 𝑥 +s 𝑦 ) ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) = ( ( 𝑥 +s 𝑦 ) ·s 𝑧 ) ) |
| 106 |
104 105
|
eqtrd |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) 𝑦 ) ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) = ( ( 𝑥 +s 𝑦 ) ·s 𝑧 ) ) |
| 107 |
94 57
|
oveq12d |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) ( +s ↾ ( ℤs × ℤs ) ) ( 𝑦 ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) ) = ( ( 𝑥 ·s 𝑧 ) ( +s ↾ ( ℤs × ℤs ) ) ( 𝑦 ·s 𝑧 ) ) ) |
| 108 |
96 59
|
ovresd |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( ( 𝑥 ·s 𝑧 ) ( +s ↾ ( ℤs × ℤs ) ) ( 𝑦 ·s 𝑧 ) ) = ( ( 𝑥 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧 ) ) ) |
| 109 |
107 108
|
eqtrd |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) ( +s ↾ ( ℤs × ℤs ) ) ( 𝑦 ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) ) = ( ( 𝑥 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧 ) ) ) |
| 110 |
103 106 109
|
3eqtr4d |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) 𝑦 ) ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) = ( ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) ( +s ↾ ( ℤs × ℤs ) ) ( 𝑦 ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) ) ) |
| 111 |
99 110
|
jca |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) ( 𝑦 ( +s ↾ ( ℤs × ℤs ) ) 𝑧 ) ) = ( ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) ( +s ↾ ( ℤs × ℤs ) ) ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) ) ∧ ( ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) 𝑦 ) ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) = ( ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) ( +s ↾ ( ℤs × ℤs ) ) ( 𝑦 ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) ) ) ) |
| 112 |
111
|
rgen3 |
⊢ ∀ 𝑥 ∈ ℤs ∀ 𝑦 ∈ ℤs ∀ 𝑧 ∈ ℤs ( ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) ( 𝑦 ( +s ↾ ( ℤs × ℤs ) ) 𝑧 ) ) = ( ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) ( +s ↾ ( ℤs × ℤs ) ) ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) ) ∧ ( ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) 𝑦 ) ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) = ( ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) ( +s ↾ ( ℤs × ℤs ) ) ( 𝑦 ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) ) ) |
| 113 |
1 83 2 3
|
isring |
⊢ ( 𝐾 ∈ Ring ↔ ( 𝐾 ∈ Grp ∧ ( mulGrp ‘ 𝐾 ) ∈ Mnd ∧ ∀ 𝑥 ∈ ℤs ∀ 𝑦 ∈ ℤs ∀ 𝑧 ∈ ℤs ( ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) ( 𝑦 ( +s ↾ ( ℤs × ℤs ) ) 𝑧 ) ) = ( ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) ( +s ↾ ( ℤs × ℤs ) ) ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) ) ∧ ( ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) 𝑦 ) ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) = ( ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) ( +s ↾ ( ℤs × ℤs ) ) ( 𝑦 ( ·s ↾ ( ℤs × ℤs ) ) 𝑧 ) ) ) ) ) |
| 114 |
42 87 112 113
|
mpbir3an |
⊢ 𝐾 ∈ Ring |
| 115 |
28
|
3expa |
⊢ ( ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ) ∧ 𝑧 ∈ ℤs ) → ( ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) 𝑦 ) ( +s ↾ ( ℤs × ℤs ) ) 𝑧 ) = ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) ( 𝑦 ( +s ↾ ( ℤs × ℤs ) ) 𝑧 ) ) ) |
| 116 |
115
|
ralrimiva |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ) → ∀ 𝑧 ∈ ℤs ( ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) 𝑦 ) ( +s ↾ ( ℤs × ℤs ) ) 𝑧 ) = ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) ( 𝑦 ( +s ↾ ( ℤs × ℤs ) ) 𝑧 ) ) ) |
| 117 |
8 116
|
jca |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ) → ( ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) 𝑦 ) ∈ ℤs ∧ ∀ 𝑧 ∈ ℤs ( ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) 𝑦 ) ( +s ↾ ( ℤs × ℤs ) ) 𝑧 ) = ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) ( 𝑦 ( +s ↾ ( ℤs × ℤs ) ) 𝑧 ) ) ) ) |
| 118 |
117
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℤs ∀ 𝑦 ∈ ℤs ( ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) 𝑦 ) ∈ ℤs ∧ ∀ 𝑧 ∈ ℤs ( ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) 𝑦 ) ( +s ↾ ( ℤs × ℤs ) ) 𝑧 ) = ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) ( 𝑦 ( +s ↾ ( ℤs × ℤs ) ) 𝑧 ) ) ) |
| 119 |
|
ovres |
⊢ ( ( 𝑥 ∈ ℤs ∧ 0s ∈ ℤs ) → ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) 0s ) = ( 𝑥 +s 0s ) ) |
| 120 |
29 119
|
mpan2 |
⊢ ( 𝑥 ∈ ℤs → ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) 0s ) = ( 𝑥 +s 0s ) ) |
| 121 |
9
|
addsridd |
⊢ ( 𝑥 ∈ ℤs → ( 𝑥 +s 0s ) = 𝑥 ) |
| 122 |
120 121
|
eqtrd |
⊢ ( 𝑥 ∈ ℤs → ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) 0s ) = 𝑥 ) |
| 123 |
34 122
|
jca |
⊢ ( 𝑥 ∈ ℤs → ( ( 0s ( +s ↾ ( ℤs × ℤs ) ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) 0s ) = 𝑥 ) ) |
| 124 |
123
|
rgen |
⊢ ∀ 𝑥 ∈ ℤs ( ( 0s ( +s ↾ ( ℤs × ℤs ) ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) 0s ) = 𝑥 ) |
| 125 |
|
oveq1 |
⊢ ( 𝑦 = 0s → ( 𝑦 ( +s ↾ ( ℤs × ℤs ) ) 𝑥 ) = ( 0s ( +s ↾ ( ℤs × ℤs ) ) 𝑥 ) ) |
| 126 |
125
|
eqeq1d |
⊢ ( 𝑦 = 0s → ( ( 𝑦 ( +s ↾ ( ℤs × ℤs ) ) 𝑥 ) = 𝑥 ↔ ( 0s ( +s ↾ ( ℤs × ℤs ) ) 𝑥 ) = 𝑥 ) ) |
| 127 |
126
|
ovanraleqv |
⊢ ( 𝑦 = 0s → ( ∀ 𝑥 ∈ ℤs ( ( 𝑦 ( +s ↾ ( ℤs × ℤs ) ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) 𝑦 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ ℤs ( ( 0s ( +s ↾ ( ℤs × ℤs ) ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) 0s ) = 𝑥 ) ) ) |
| 128 |
127
|
rspcev |
⊢ ( ( 0s ∈ ℤs ∧ ∀ 𝑥 ∈ ℤs ( ( 0s ( +s ↾ ( ℤs × ℤs ) ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) 0s ) = 𝑥 ) ) → ∃ 𝑦 ∈ ℤs ∀ 𝑥 ∈ ℤs ( ( 𝑦 ( +s ↾ ( ℤs × ℤs ) ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) 𝑦 ) = 𝑥 ) ) |
| 129 |
29 124 128
|
mp2an |
⊢ ∃ 𝑦 ∈ ℤs ∀ 𝑥 ∈ ℤs ( ( 𝑦 ( +s ↾ ( ℤs × ℤs ) ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) 𝑦 ) = 𝑥 ) |
| 130 |
1 2
|
ismnd |
⊢ ( 𝐾 ∈ Mnd ↔ ( ∀ 𝑥 ∈ ℤs ∀ 𝑦 ∈ ℤs ( ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) 𝑦 ) ∈ ℤs ∧ ∀ 𝑧 ∈ ℤs ( ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) 𝑦 ) ( +s ↾ ( ℤs × ℤs ) ) 𝑧 ) = ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) ( 𝑦 ( +s ↾ ( ℤs × ℤs ) ) 𝑧 ) ) ) ∧ ∃ 𝑦 ∈ ℤs ∀ 𝑥 ∈ ℤs ( ( 𝑦 ( +s ↾ ( ℤs × ℤs ) ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) 𝑦 ) = 𝑥 ) ) ) |
| 131 |
118 129 130
|
mpbir2an |
⊢ 𝐾 ∈ Mnd |
| 132 |
42
|
elexi |
⊢ 𝐾 ∈ V |
| 133 |
|
slerflex |
⊢ ( 𝑥 ∈ No → 𝑥 ≤s 𝑥 ) |
| 134 |
9 133
|
syl |
⊢ ( 𝑥 ∈ ℤs → 𝑥 ≤s 𝑥 ) |
| 135 |
|
brxp |
⊢ ( 𝑥 ( ℤs × ℤs ) 𝑥 ↔ ( 𝑥 ∈ ℤs ∧ 𝑥 ∈ ℤs ) ) |
| 136 |
135
|
biimpri |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑥 ∈ ℤs ) → 𝑥 ( ℤs × ℤs ) 𝑥 ) |
| 137 |
136
|
anidms |
⊢ ( 𝑥 ∈ ℤs → 𝑥 ( ℤs × ℤs ) 𝑥 ) |
| 138 |
|
brin |
⊢ ( 𝑥 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑥 ↔ ( 𝑥 ≤s 𝑥 ∧ 𝑥 ( ℤs × ℤs ) 𝑥 ) ) |
| 139 |
134 137 138
|
sylanbrc |
⊢ ( 𝑥 ∈ ℤs → 𝑥 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑥 ) |
| 140 |
139
|
3ad2ant1 |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → 𝑥 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑥 ) |
| 141 |
|
brin |
⊢ ( 𝑥 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑦 ↔ ( 𝑥 ≤s 𝑦 ∧ 𝑥 ( ℤs × ℤs ) 𝑦 ) ) |
| 142 |
|
brxp |
⊢ ( 𝑥 ( ℤs × ℤs ) 𝑦 ↔ ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ) ) |
| 143 |
142
|
biimpri |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ) → 𝑥 ( ℤs × ℤs ) 𝑦 ) |
| 144 |
143
|
3adant3 |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → 𝑥 ( ℤs × ℤs ) 𝑦 ) |
| 145 |
144
|
biantrud |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑥 ≤s 𝑦 ↔ ( 𝑥 ≤s 𝑦 ∧ 𝑥 ( ℤs × ℤs ) 𝑦 ) ) ) |
| 146 |
141 145
|
bitr4id |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑥 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑦 ↔ 𝑥 ≤s 𝑦 ) ) |
| 147 |
|
brin |
⊢ ( 𝑦 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑥 ↔ ( 𝑦 ≤s 𝑥 ∧ 𝑦 ( ℤs × ℤs ) 𝑥 ) ) |
| 148 |
|
brxp |
⊢ ( 𝑦 ( ℤs × ℤs ) 𝑥 ↔ ( 𝑦 ∈ ℤs ∧ 𝑥 ∈ ℤs ) ) |
| 149 |
148
|
biimpri |
⊢ ( ( 𝑦 ∈ ℤs ∧ 𝑥 ∈ ℤs ) → 𝑦 ( ℤs × ℤs ) 𝑥 ) |
| 150 |
149
|
ancoms |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ) → 𝑦 ( ℤs × ℤs ) 𝑥 ) |
| 151 |
150
|
biantrud |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ) → ( 𝑦 ≤s 𝑥 ↔ ( 𝑦 ≤s 𝑥 ∧ 𝑦 ( ℤs × ℤs ) 𝑥 ) ) ) |
| 152 |
147 151
|
bitr4id |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ) → ( 𝑦 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑥 ↔ 𝑦 ≤s 𝑥 ) ) |
| 153 |
152
|
3adant3 |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑦 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑥 ↔ 𝑦 ≤s 𝑥 ) ) |
| 154 |
146 153
|
anbi12d |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( ( 𝑥 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑦 ∧ 𝑦 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑥 ) ↔ ( 𝑥 ≤s 𝑦 ∧ 𝑦 ≤s 𝑥 ) ) ) |
| 155 |
|
sletri3 |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) → ( 𝑥 = 𝑦 ↔ ( 𝑥 ≤s 𝑦 ∧ 𝑦 ≤s 𝑥 ) ) ) |
| 156 |
9 10 155
|
syl2an |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ) → ( 𝑥 = 𝑦 ↔ ( 𝑥 ≤s 𝑦 ∧ 𝑦 ≤s 𝑥 ) ) ) |
| 157 |
156
|
3adant3 |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑥 = 𝑦 ↔ ( 𝑥 ≤s 𝑦 ∧ 𝑦 ≤s 𝑥 ) ) ) |
| 158 |
157
|
biimprd |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( ( 𝑥 ≤s 𝑦 ∧ 𝑦 ≤s 𝑥 ) → 𝑥 = 𝑦 ) ) |
| 159 |
154 158
|
sylbid |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( ( 𝑥 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑦 ∧ 𝑦 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑥 ) → 𝑥 = 𝑦 ) ) |
| 160 |
|
sletr |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) → ( ( 𝑥 ≤s 𝑦 ∧ 𝑦 ≤s 𝑧 ) → 𝑥 ≤s 𝑧 ) ) |
| 161 |
9 10 11 160
|
syl3an |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( ( 𝑥 ≤s 𝑦 ∧ 𝑦 ≤s 𝑧 ) → 𝑥 ≤s 𝑧 ) ) |
| 162 |
143
|
biantrud |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ) → ( 𝑥 ≤s 𝑦 ↔ ( 𝑥 ≤s 𝑦 ∧ 𝑥 ( ℤs × ℤs ) 𝑦 ) ) ) |
| 163 |
141 162
|
bitr4id |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ) → ( 𝑥 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑦 ↔ 𝑥 ≤s 𝑦 ) ) |
| 164 |
163
|
3adant3 |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑥 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑦 ↔ 𝑥 ≤s 𝑦 ) ) |
| 165 |
|
brin |
⊢ ( 𝑦 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑧 ↔ ( 𝑦 ≤s 𝑧 ∧ 𝑦 ( ℤs × ℤs ) 𝑧 ) ) |
| 166 |
|
brxp |
⊢ ( 𝑦 ( ℤs × ℤs ) 𝑧 ↔ ( 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) ) |
| 167 |
166
|
biimpri |
⊢ ( ( 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → 𝑦 ( ℤs × ℤs ) 𝑧 ) |
| 168 |
167
|
3adant1 |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → 𝑦 ( ℤs × ℤs ) 𝑧 ) |
| 169 |
168
|
biantrud |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑦 ≤s 𝑧 ↔ ( 𝑦 ≤s 𝑧 ∧ 𝑦 ( ℤs × ℤs ) 𝑧 ) ) ) |
| 170 |
165 169
|
bitr4id |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑦 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑧 ↔ 𝑦 ≤s 𝑧 ) ) |
| 171 |
164 170
|
anbi12d |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( ( 𝑥 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑦 ∧ 𝑦 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑧 ) ↔ ( 𝑥 ≤s 𝑦 ∧ 𝑦 ≤s 𝑧 ) ) ) |
| 172 |
|
brin |
⊢ ( 𝑥 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑧 ↔ ( 𝑥 ≤s 𝑧 ∧ 𝑥 ( ℤs × ℤs ) 𝑧 ) ) |
| 173 |
|
brxp |
⊢ ( 𝑥 ( ℤs × ℤs ) 𝑧 ↔ ( 𝑥 ∈ ℤs ∧ 𝑧 ∈ ℤs ) ) |
| 174 |
173
|
biimpri |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → 𝑥 ( ℤs × ℤs ) 𝑧 ) |
| 175 |
174
|
3adant2 |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → 𝑥 ( ℤs × ℤs ) 𝑧 ) |
| 176 |
175
|
biantrud |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑥 ≤s 𝑧 ↔ ( 𝑥 ≤s 𝑧 ∧ 𝑥 ( ℤs × ℤs ) 𝑧 ) ) ) |
| 177 |
172 176
|
bitr4id |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑥 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑧 ↔ 𝑥 ≤s 𝑧 ) ) |
| 178 |
161 171 177
|
3imtr4d |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( ( 𝑥 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑦 ∧ 𝑦 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑧 ) → 𝑥 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑧 ) ) |
| 179 |
140 159 178
|
3jca |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑥 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑥 ∧ ( ( 𝑥 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑦 ∧ 𝑦 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑦 ∧ 𝑦 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑧 ) → 𝑥 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑧 ) ) ) |
| 180 |
179
|
rgen3 |
⊢ ∀ 𝑥 ∈ ℤs ∀ 𝑦 ∈ ℤs ∀ 𝑧 ∈ ℤs ( 𝑥 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑥 ∧ ( ( 𝑥 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑦 ∧ 𝑦 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑦 ∧ 𝑦 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑧 ) → 𝑥 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑧 ) ) |
| 181 |
1 4
|
ispos |
⊢ ( 𝐾 ∈ Poset ↔ ( 𝐾 ∈ V ∧ ∀ 𝑥 ∈ ℤs ∀ 𝑦 ∈ ℤs ∀ 𝑧 ∈ ℤs ( 𝑥 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑥 ∧ ( ( 𝑥 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑦 ∧ 𝑦 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑦 ∧ 𝑦 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑧 ) → 𝑥 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑧 ) ) ) ) |
| 182 |
132 180 181
|
mpbir2an |
⊢ 𝐾 ∈ Poset |
| 183 |
|
sletric |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) → ( 𝑥 ≤s 𝑦 ∨ 𝑦 ≤s 𝑥 ) ) |
| 184 |
9 10 183
|
syl2an |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ) → ( 𝑥 ≤s 𝑦 ∨ 𝑦 ≤s 𝑥 ) ) |
| 185 |
163 152
|
orbi12d |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ) → ( ( 𝑥 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑦 ∨ 𝑦 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑥 ) ↔ ( 𝑥 ≤s 𝑦 ∨ 𝑦 ≤s 𝑥 ) ) ) |
| 186 |
184 185
|
mpbird |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ) → ( 𝑥 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑦 ∨ 𝑦 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑥 ) ) |
| 187 |
186
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℤs ∀ 𝑦 ∈ ℤs ( 𝑥 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑦 ∨ 𝑦 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑥 ) |
| 188 |
1 4
|
istos |
⊢ ( 𝐾 ∈ Toset ↔ ( 𝐾 ∈ Poset ∧ ∀ 𝑥 ∈ ℤs ∀ 𝑦 ∈ ℤs ( 𝑥 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑦 ∨ 𝑦 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑥 ) ) ) |
| 189 |
182 187 188
|
mpbir2an |
⊢ 𝐾 ∈ Toset |
| 190 |
|
sleadd1 |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) → ( 𝑥 ≤s 𝑦 ↔ ( 𝑥 +s 𝑧 ) ≤s ( 𝑦 +s 𝑧 ) ) ) |
| 191 |
9 10 11 190
|
syl3an |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑥 ≤s 𝑦 ↔ ( 𝑥 +s 𝑧 ) ≤s ( 𝑦 +s 𝑧 ) ) ) |
| 192 |
191
|
biimpd |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑥 ≤s 𝑦 → ( 𝑥 +s 𝑧 ) ≤s ( 𝑦 +s 𝑧 ) ) ) |
| 193 |
23 17
|
ovresd |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) 𝑧 ) = ( 𝑥 +s 𝑧 ) ) |
| 194 |
52 17
|
ovresd |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑦 ( +s ↾ ( ℤs × ℤs ) ) 𝑧 ) = ( 𝑦 +s 𝑧 ) ) |
| 195 |
193 194
|
breq12d |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) 𝑧 ) ( ≤s ∩ ( ℤs × ℤs ) ) ( 𝑦 ( +s ↾ ( ℤs × ℤs ) ) 𝑧 ) ↔ ( 𝑥 +s 𝑧 ) ( ≤s ∩ ( ℤs × ℤs ) ) ( 𝑦 +s 𝑧 ) ) ) |
| 196 |
|
brin |
⊢ ( ( 𝑥 +s 𝑧 ) ( ≤s ∩ ( ℤs × ℤs ) ) ( 𝑦 +s 𝑧 ) ↔ ( ( 𝑥 +s 𝑧 ) ≤s ( 𝑦 +s 𝑧 ) ∧ ( 𝑥 +s 𝑧 ) ( ℤs × ℤs ) ( 𝑦 +s 𝑧 ) ) ) |
| 197 |
|
zaddscl |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑥 +s 𝑧 ) ∈ ℤs ) |
| 198 |
197
|
3adant2 |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑥 +s 𝑧 ) ∈ ℤs ) |
| 199 |
|
brxp |
⊢ ( ( 𝑥 +s 𝑧 ) ( ℤs × ℤs ) ( 𝑦 +s 𝑧 ) ↔ ( ( 𝑥 +s 𝑧 ) ∈ ℤs ∧ ( 𝑦 +s 𝑧 ) ∈ ℤs ) ) |
| 200 |
198 25 199
|
sylanbrc |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑥 +s 𝑧 ) ( ℤs × ℤs ) ( 𝑦 +s 𝑧 ) ) |
| 201 |
200
|
biantrud |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( ( 𝑥 +s 𝑧 ) ≤s ( 𝑦 +s 𝑧 ) ↔ ( ( 𝑥 +s 𝑧 ) ≤s ( 𝑦 +s 𝑧 ) ∧ ( 𝑥 +s 𝑧 ) ( ℤs × ℤs ) ( 𝑦 +s 𝑧 ) ) ) ) |
| 202 |
196 201
|
bitr4id |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( ( 𝑥 +s 𝑧 ) ( ≤s ∩ ( ℤs × ℤs ) ) ( 𝑦 +s 𝑧 ) ↔ ( 𝑥 +s 𝑧 ) ≤s ( 𝑦 +s 𝑧 ) ) ) |
| 203 |
195 202
|
bitrd |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) 𝑧 ) ( ≤s ∩ ( ℤs × ℤs ) ) ( 𝑦 ( +s ↾ ( ℤs × ℤs ) ) 𝑧 ) ↔ ( 𝑥 +s 𝑧 ) ≤s ( 𝑦 +s 𝑧 ) ) ) |
| 204 |
192 146 203
|
3imtr4d |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℤs ∧ 𝑧 ∈ ℤs ) → ( 𝑥 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑦 → ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) 𝑧 ) ( ≤s ∩ ( ℤs × ℤs ) ) ( 𝑦 ( +s ↾ ( ℤs × ℤs ) ) 𝑧 ) ) ) |
| 205 |
204
|
rgen3 |
⊢ ∀ 𝑥 ∈ ℤs ∀ 𝑦 ∈ ℤs ∀ 𝑧 ∈ ℤs ( 𝑥 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑦 → ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) 𝑧 ) ( ≤s ∩ ( ℤs × ℤs ) ) ( 𝑦 ( +s ↾ ( ℤs × ℤs ) ) 𝑧 ) ) |
| 206 |
1 2 4
|
isomnd |
⊢ ( 𝐾 ∈ oMnd ↔ ( 𝐾 ∈ Mnd ∧ 𝐾 ∈ Toset ∧ ∀ 𝑥 ∈ ℤs ∀ 𝑦 ∈ ℤs ∀ 𝑧 ∈ ℤs ( 𝑥 ( ≤s ∩ ( ℤs × ℤs ) ) 𝑦 → ( 𝑥 ( +s ↾ ( ℤs × ℤs ) ) 𝑧 ) ( ≤s ∩ ( ℤs × ℤs ) ) ( 𝑦 ( +s ↾ ( ℤs × ℤs ) ) 𝑧 ) ) ) ) |
| 207 |
131 189 205 206
|
mpbir3an |
⊢ 𝐾 ∈ oMnd |
| 208 |
|
isogrp |
⊢ ( 𝐾 ∈ oGrp ↔ ( 𝐾 ∈ Grp ∧ 𝐾 ∈ oMnd ) ) |
| 209 |
42 207 208
|
mpbir2an |
⊢ 𝐾 ∈ oGrp |
| 210 |
|
simplr |
⊢ ( ( ( 0s ≤s 𝑥 ∧ 𝑥 ∈ ℤs ) ∧ ( 0s ≤s 𝑦 ∧ 𝑦 ∈ ℤs ) ) → 𝑥 ∈ ℤs ) |
| 211 |
210
|
znod |
⊢ ( ( ( 0s ≤s 𝑥 ∧ 𝑥 ∈ ℤs ) ∧ ( 0s ≤s 𝑦 ∧ 𝑦 ∈ ℤs ) ) → 𝑥 ∈ No ) |
| 212 |
|
simprr |
⊢ ( ( ( 0s ≤s 𝑥 ∧ 𝑥 ∈ ℤs ) ∧ ( 0s ≤s 𝑦 ∧ 𝑦 ∈ ℤs ) ) → 𝑦 ∈ ℤs ) |
| 213 |
212
|
znod |
⊢ ( ( ( 0s ≤s 𝑥 ∧ 𝑥 ∈ ℤs ) ∧ ( 0s ≤s 𝑦 ∧ 𝑦 ∈ ℤs ) ) → 𝑦 ∈ No ) |
| 214 |
|
simpll |
⊢ ( ( ( 0s ≤s 𝑥 ∧ 𝑥 ∈ ℤs ) ∧ ( 0s ≤s 𝑦 ∧ 𝑦 ∈ ℤs ) ) → 0s ≤s 𝑥 ) |
| 215 |
|
simprl |
⊢ ( ( ( 0s ≤s 𝑥 ∧ 𝑥 ∈ ℤs ) ∧ ( 0s ≤s 𝑦 ∧ 𝑦 ∈ ℤs ) ) → 0s ≤s 𝑦 ) |
| 216 |
211 213 214 215
|
mulsge0d |
⊢ ( ( ( 0s ≤s 𝑥 ∧ 𝑥 ∈ ℤs ) ∧ ( 0s ≤s 𝑦 ∧ 𝑦 ∈ ℤs ) ) → 0s ≤s ( 𝑥 ·s 𝑦 ) ) |
| 217 |
210 212
|
ovresd |
⊢ ( ( ( 0s ≤s 𝑥 ∧ 𝑥 ∈ ℤs ) ∧ ( 0s ≤s 𝑦 ∧ 𝑦 ∈ ℤs ) ) → ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) = ( 𝑥 ·s 𝑦 ) ) |
| 218 |
216 217
|
breqtrrd |
⊢ ( ( ( 0s ≤s 𝑥 ∧ 𝑥 ∈ ℤs ) ∧ ( 0s ≤s 𝑦 ∧ 𝑦 ∈ ℤs ) ) → 0s ≤s ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) ) |
| 219 |
210 212
|
zmulscld |
⊢ ( ( ( 0s ≤s 𝑥 ∧ 𝑥 ∈ ℤs ) ∧ ( 0s ≤s 𝑦 ∧ 𝑦 ∈ ℤs ) ) → ( 𝑥 ·s 𝑦 ) ∈ ℤs ) |
| 220 |
217 219
|
eqeltrd |
⊢ ( ( ( 0s ≤s 𝑥 ∧ 𝑥 ∈ ℤs ) ∧ ( 0s ≤s 𝑦 ∧ 𝑦 ∈ ℤs ) ) → ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) ∈ ℤs ) |
| 221 |
218 220
|
jca |
⊢ ( ( ( 0s ≤s 𝑥 ∧ 𝑥 ∈ ℤs ) ∧ ( 0s ≤s 𝑦 ∧ 𝑦 ∈ ℤs ) ) → ( 0s ≤s ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) ∧ ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) ∈ ℤs ) ) |
| 222 |
|
brin |
⊢ ( 0s ( ≤s ∩ ( ℤs × ℤs ) ) 𝑥 ↔ ( 0s ≤s 𝑥 ∧ 0s ( ℤs × ℤs ) 𝑥 ) ) |
| 223 |
|
brxp |
⊢ ( 0s ( ℤs × ℤs ) 𝑥 ↔ ( 0s ∈ ℤs ∧ 𝑥 ∈ ℤs ) ) |
| 224 |
29 223
|
mpbiran |
⊢ ( 0s ( ℤs × ℤs ) 𝑥 ↔ 𝑥 ∈ ℤs ) |
| 225 |
224
|
anbi2i |
⊢ ( ( 0s ≤s 𝑥 ∧ 0s ( ℤs × ℤs ) 𝑥 ) ↔ ( 0s ≤s 𝑥 ∧ 𝑥 ∈ ℤs ) ) |
| 226 |
222 225
|
bitri |
⊢ ( 0s ( ≤s ∩ ( ℤs × ℤs ) ) 𝑥 ↔ ( 0s ≤s 𝑥 ∧ 𝑥 ∈ ℤs ) ) |
| 227 |
|
brin |
⊢ ( 0s ( ≤s ∩ ( ℤs × ℤs ) ) 𝑦 ↔ ( 0s ≤s 𝑦 ∧ 0s ( ℤs × ℤs ) 𝑦 ) ) |
| 228 |
|
brxp |
⊢ ( 0s ( ℤs × ℤs ) 𝑦 ↔ ( 0s ∈ ℤs ∧ 𝑦 ∈ ℤs ) ) |
| 229 |
29 228
|
mpbiran |
⊢ ( 0s ( ℤs × ℤs ) 𝑦 ↔ 𝑦 ∈ ℤs ) |
| 230 |
229
|
anbi2i |
⊢ ( ( 0s ≤s 𝑦 ∧ 0s ( ℤs × ℤs ) 𝑦 ) ↔ ( 0s ≤s 𝑦 ∧ 𝑦 ∈ ℤs ) ) |
| 231 |
227 230
|
bitri |
⊢ ( 0s ( ≤s ∩ ( ℤs × ℤs ) ) 𝑦 ↔ ( 0s ≤s 𝑦 ∧ 𝑦 ∈ ℤs ) ) |
| 232 |
226 231
|
anbi12i |
⊢ ( ( 0s ( ≤s ∩ ( ℤs × ℤs ) ) 𝑥 ∧ 0s ( ≤s ∩ ( ℤs × ℤs ) ) 𝑦 ) ↔ ( ( 0s ≤s 𝑥 ∧ 𝑥 ∈ ℤs ) ∧ ( 0s ≤s 𝑦 ∧ 𝑦 ∈ ℤs ) ) ) |
| 233 |
|
brin |
⊢ ( 0s ( ≤s ∩ ( ℤs × ℤs ) ) ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) ↔ ( 0s ≤s ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) ∧ 0s ( ℤs × ℤs ) ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) ) ) |
| 234 |
|
brxp |
⊢ ( 0s ( ℤs × ℤs ) ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) ↔ ( 0s ∈ ℤs ∧ ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) ∈ ℤs ) ) |
| 235 |
29 234
|
mpbiran |
⊢ ( 0s ( ℤs × ℤs ) ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) ↔ ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) ∈ ℤs ) |
| 236 |
235
|
anbi2i |
⊢ ( ( 0s ≤s ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) ∧ 0s ( ℤs × ℤs ) ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) ) ↔ ( 0s ≤s ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) ∧ ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) ∈ ℤs ) ) |
| 237 |
233 236
|
bitri |
⊢ ( 0s ( ≤s ∩ ( ℤs × ℤs ) ) ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) ↔ ( 0s ≤s ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) ∧ ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) ∈ ℤs ) ) |
| 238 |
221 232 237
|
3imtr4i |
⊢ ( ( 0s ( ≤s ∩ ( ℤs × ℤs ) ) 𝑥 ∧ 0s ( ≤s ∩ ( ℤs × ℤs ) ) 𝑦 ) → 0s ( ≤s ∩ ( ℤs × ℤs ) ) ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) ) |
| 239 |
238
|
rgen2w |
⊢ ∀ 𝑥 ∈ ℤs ∀ 𝑦 ∈ ℤs ( ( 0s ( ≤s ∩ ( ℤs × ℤs ) ) 𝑥 ∧ 0s ( ≤s ∩ ( ℤs × ℤs ) ) 𝑦 ) → 0s ( ≤s ∩ ( ℤs × ℤs ) ) ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) ) |
| 240 |
1 5 3 4
|
isorng |
⊢ ( 𝐾 ∈ oRing ↔ ( 𝐾 ∈ Ring ∧ 𝐾 ∈ oGrp ∧ ∀ 𝑥 ∈ ℤs ∀ 𝑦 ∈ ℤs ( ( 0s ( ≤s ∩ ( ℤs × ℤs ) ) 𝑥 ∧ 0s ( ≤s ∩ ( ℤs × ℤs ) ) 𝑦 ) → 0s ( ≤s ∩ ( ℤs × ℤs ) ) ( 𝑥 ( ·s ↾ ( ℤs × ℤs ) ) 𝑦 ) ) ) ) |
| 241 |
114 209 239 240
|
mpbir3an |
⊢ 𝐾 ∈ oRing |