Metamath Proof Explorer


Theorem znod

Description: A surreal integer is a surreal. Deduction form. (Contributed by Scott Fenton, 17-May-2025)

Ref Expression
Hypothesis znod.1 ( 𝜑𝐴 ∈ ℤs )
Assertion znod ( 𝜑𝐴 No )

Proof

Step Hyp Ref Expression
1 znod.1 ( 𝜑𝐴 ∈ ℤs )
2 zno ( 𝐴 ∈ ℤs𝐴 No )
3 1 2 syl ( 𝜑𝐴 No )