| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 | ⊢ ( 𝑥  =  𝑥𝑂  →  ( 𝑥  ·s  𝑦 )  =  ( 𝑥𝑂  ·s  𝑦 ) ) | 
						
							| 2 | 1 | oveq1d | ⊢ ( 𝑥  =  𝑥𝑂  →  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧 )  =  ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 ) ) | 
						
							| 3 |  | oveq1 | ⊢ ( 𝑥  =  𝑥𝑂  →  ( 𝑥  ·s  ( 𝑦  ·s  𝑧 ) )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) ) ) | 
						
							| 4 | 2 3 | eqeq12d | ⊢ ( 𝑥  =  𝑥𝑂  →  ( ( ( 𝑥  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧 ) )  ↔  ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) ) ) ) | 
						
							| 5 |  | oveq2 | ⊢ ( 𝑦  =  𝑦𝑂  →  ( 𝑥𝑂  ·s  𝑦 )  =  ( 𝑥𝑂  ·s  𝑦𝑂 ) ) | 
						
							| 6 | 5 | oveq1d | ⊢ ( 𝑦  =  𝑦𝑂  →  ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 ) ) | 
						
							| 7 |  | oveq1 | ⊢ ( 𝑦  =  𝑦𝑂  →  ( 𝑦  ·s  𝑧 )  =  ( 𝑦𝑂  ·s  𝑧 ) ) | 
						
							| 8 | 7 | oveq2d | ⊢ ( 𝑦  =  𝑦𝑂  →  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) ) | 
						
							| 9 | 6 8 | eqeq12d | ⊢ ( 𝑦  =  𝑦𝑂  →  ( ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) )  ↔  ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) ) ) | 
						
							| 10 |  | oveq2 | ⊢ ( 𝑧  =  𝑧𝑂  →  ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 ) ) | 
						
							| 11 |  | oveq2 | ⊢ ( 𝑧  =  𝑧𝑂  →  ( 𝑦𝑂  ·s  𝑧 )  =  ( 𝑦𝑂  ·s  𝑧𝑂 ) ) | 
						
							| 12 | 11 | oveq2d | ⊢ ( 𝑧  =  𝑧𝑂  →  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) ) ) | 
						
							| 13 | 10 12 | eqeq12d | ⊢ ( 𝑧  =  𝑧𝑂  →  ( ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  ↔  ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) ) ) ) | 
						
							| 14 |  | oveq1 | ⊢ ( 𝑥  =  𝑥𝑂  →  ( 𝑥  ·s  𝑦𝑂 )  =  ( 𝑥𝑂  ·s  𝑦𝑂 ) ) | 
						
							| 15 | 14 | oveq1d | ⊢ ( 𝑥  =  𝑥𝑂  →  ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 ) ) | 
						
							| 16 |  | oveq1 | ⊢ ( 𝑥  =  𝑥𝑂  →  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) ) ) | 
						
							| 17 | 15 16 | eqeq12d | ⊢ ( 𝑥  =  𝑥𝑂  →  ( ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ↔  ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) ) ) ) | 
						
							| 18 |  | oveq2 | ⊢ ( 𝑦  =  𝑦𝑂  →  ( 𝑥  ·s  𝑦 )  =  ( 𝑥  ·s  𝑦𝑂 ) ) | 
						
							| 19 | 18 | oveq1d | ⊢ ( 𝑦  =  𝑦𝑂  →  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 ) ) | 
						
							| 20 |  | oveq1 | ⊢ ( 𝑦  =  𝑦𝑂  →  ( 𝑦  ·s  𝑧𝑂 )  =  ( 𝑦𝑂  ·s  𝑧𝑂 ) ) | 
						
							| 21 | 20 | oveq2d | ⊢ ( 𝑦  =  𝑦𝑂  →  ( 𝑥  ·s  ( 𝑦  ·s  𝑧𝑂 ) )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) ) ) | 
						
							| 22 | 19 21 | eqeq12d | ⊢ ( 𝑦  =  𝑦𝑂  →  ( ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧𝑂 ) )  ↔  ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) ) ) ) | 
						
							| 23 | 5 | oveq1d | ⊢ ( 𝑦  =  𝑦𝑂  →  ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 ) ) | 
						
							| 24 | 20 | oveq2d | ⊢ ( 𝑦  =  𝑦𝑂  →  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧𝑂 ) )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) ) ) | 
						
							| 25 | 23 24 | eqeq12d | ⊢ ( 𝑦  =  𝑦𝑂  →  ( ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧𝑂 ) )  ↔  ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) ) ) ) | 
						
							| 26 |  | oveq2 | ⊢ ( 𝑧  =  𝑧𝑂  →  ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 ) ) | 
						
							| 27 | 11 | oveq2d | ⊢ ( 𝑧  =  𝑧𝑂  →  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) ) ) | 
						
							| 28 | 26 27 | eqeq12d | ⊢ ( 𝑧  =  𝑧𝑂  →  ( ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  ↔  ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) ) ) ) | 
						
							| 29 |  | oveq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ·s  𝑦 )  =  ( 𝐴  ·s  𝑦 ) ) | 
						
							| 30 | 29 | oveq1d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧 )  =  ( ( 𝐴  ·s  𝑦 )  ·s  𝑧 ) ) | 
						
							| 31 |  | oveq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ·s  ( 𝑦  ·s  𝑧 ) )  =  ( 𝐴  ·s  ( 𝑦  ·s  𝑧 ) ) ) | 
						
							| 32 | 30 31 | eqeq12d | ⊢ ( 𝑥  =  𝐴  →  ( ( ( 𝑥  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧 ) )  ↔  ( ( 𝐴  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝐴  ·s  ( 𝑦  ·s  𝑧 ) ) ) ) | 
						
							| 33 |  | oveq2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝐴  ·s  𝑦 )  =  ( 𝐴  ·s  𝐵 ) ) | 
						
							| 34 | 33 | oveq1d | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝐴  ·s  𝑦 )  ·s  𝑧 )  =  ( ( 𝐴  ·s  𝐵 )  ·s  𝑧 ) ) | 
						
							| 35 |  | oveq1 | ⊢ ( 𝑦  =  𝐵  →  ( 𝑦  ·s  𝑧 )  =  ( 𝐵  ·s  𝑧 ) ) | 
						
							| 36 | 35 | oveq2d | ⊢ ( 𝑦  =  𝐵  →  ( 𝐴  ·s  ( 𝑦  ·s  𝑧 ) )  =  ( 𝐴  ·s  ( 𝐵  ·s  𝑧 ) ) ) | 
						
							| 37 | 34 36 | eqeq12d | ⊢ ( 𝑦  =  𝐵  →  ( ( ( 𝐴  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝐴  ·s  ( 𝑦  ·s  𝑧 ) )  ↔  ( ( 𝐴  ·s  𝐵 )  ·s  𝑧 )  =  ( 𝐴  ·s  ( 𝐵  ·s  𝑧 ) ) ) ) | 
						
							| 38 |  | oveq2 | ⊢ ( 𝑧  =  𝐶  →  ( ( 𝐴  ·s  𝐵 )  ·s  𝑧 )  =  ( ( 𝐴  ·s  𝐵 )  ·s  𝐶 ) ) | 
						
							| 39 |  | oveq2 | ⊢ ( 𝑧  =  𝐶  →  ( 𝐵  ·s  𝑧 )  =  ( 𝐵  ·s  𝐶 ) ) | 
						
							| 40 | 39 | oveq2d | ⊢ ( 𝑧  =  𝐶  →  ( 𝐴  ·s  ( 𝐵  ·s  𝑧 ) )  =  ( 𝐴  ·s  ( 𝐵  ·s  𝐶 ) ) ) | 
						
							| 41 | 38 40 | eqeq12d | ⊢ ( 𝑧  =  𝐶  →  ( ( ( 𝐴  ·s  𝐵 )  ·s  𝑧 )  =  ( 𝐴  ·s  ( 𝐵  ·s  𝑧 ) )  ↔  ( ( 𝐴  ·s  𝐵 )  ·s  𝐶 )  =  ( 𝐴  ·s  ( 𝐵  ·s  𝐶 ) ) ) ) | 
						
							| 42 |  | simpl1 | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) ) )  →  𝑥  ∈   No  ) | 
						
							| 43 |  | simpl2 | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) ) )  →  𝑦  ∈   No  ) | 
						
							| 44 |  | simpl3 | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) ) )  →  𝑧  ∈   No  ) | 
						
							| 45 |  | ssun1 | ⊢ (  L  ‘ 𝑥 )  ⊆  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) | 
						
							| 46 |  | ssun1 | ⊢ (  L  ‘ 𝑦 )  ⊆  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) | 
						
							| 47 |  | ssun1 | ⊢ (  L  ‘ 𝑧 )  ⊆  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) | 
						
							| 48 |  | simpr11 | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) ) )  →  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) ) ) | 
						
							| 49 |  | simpr12 | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) ) )  →  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) ) | 
						
							| 50 |  | simpr13 | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) ) )  →  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) ) | 
						
							| 51 |  | simpr22 | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) ) )  →  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) ) ) | 
						
							| 52 |  | simpr21 | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) ) )  →  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) ) ) | 
						
							| 53 |  | simpr23 | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) ) )  →  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) ) | 
						
							| 54 |  | simpr3 | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) ) )  →  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) ) | 
						
							| 55 | 42 43 44 45 46 47 48 49 50 51 52 53 54 | mulsasslem3 | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) ) )  →  ( ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝐿 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝐿 ) )  -s  ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝐿 ) )  ·s  𝑧𝐿 ) )  ↔  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) ) ) ) | 
						
							| 56 | 55 | abbidv | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) ) )  →  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝐿 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝐿 ) )  -s  ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝐿 ) )  ·s  𝑧𝐿 ) ) }  =  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) ) } ) | 
						
							| 57 |  | ssun2 | ⊢ (  R  ‘ 𝑥 )  ⊆  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) | 
						
							| 58 |  | ssun2 | ⊢ (  R  ‘ 𝑦 )  ⊆  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) | 
						
							| 59 | 42 43 44 57 58 47 48 49 50 51 52 53 54 | mulsasslem3 | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) ) )  →  ( ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝑅 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝐿 ) )  -s  ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝑅 ) )  ·s  𝑧𝐿 ) )  ↔  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) ) ) ) | 
						
							| 60 | 59 | abbidv | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) ) )  →  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝑅 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝐿 ) )  -s  ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝑅 ) )  ·s  𝑧𝐿 ) ) }  =  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) ) } ) | 
						
							| 61 | 56 60 | uneq12d | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) ) )  →  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝐿 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝐿 ) )  -s  ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝐿 ) )  ·s  𝑧𝐿 ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝑅 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝐿 ) )  -s  ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝑅 ) )  ·s  𝑧𝐿 ) ) } )  =  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) ) } ) ) | 
						
							| 62 |  | ssun2 | ⊢ (  R  ‘ 𝑧 )  ⊆  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) | 
						
							| 63 | 42 43 44 45 58 62 48 49 50 51 52 53 54 | mulsasslem3 | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) ) )  →  ( ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝑅 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑅 ) )  -s  ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝑅 ) )  ·s  𝑧𝑅 ) )  ↔  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) ) ) ) | 
						
							| 64 | 63 | abbidv | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) ) )  →  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝑅 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑅 ) )  -s  ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝑅 ) )  ·s  𝑧𝑅 ) ) }  =  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) ) } ) | 
						
							| 65 | 42 43 44 57 46 62 48 49 50 51 52 53 54 | mulsasslem3 | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) ) )  →  ( ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝐿 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑅 ) )  -s  ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝐿 ) )  ·s  𝑧𝑅 ) )  ↔  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) ) ) ) | 
						
							| 66 | 65 | abbidv | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) ) )  →  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝐿 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑅 ) )  -s  ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝐿 ) )  ·s  𝑧𝑅 ) ) }  =  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) ) } ) | 
						
							| 67 | 64 66 | uneq12d | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) ) )  →  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝑅 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑅 ) )  -s  ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝑅 ) )  ·s  𝑧𝑅 ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝐿 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑅 ) )  -s  ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝐿 ) )  ·s  𝑧𝑅 ) ) } )  =  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) ) } ) ) | 
						
							| 68 | 61 67 | uneq12d | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) ) )  →  ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝐿 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝐿 ) )  -s  ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝐿 ) )  ·s  𝑧𝐿 ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝑅 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝐿 ) )  -s  ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝑅 ) )  ·s  𝑧𝐿 ) ) } )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝑅 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑅 ) )  -s  ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝑅 ) )  ·s  𝑧𝑅 ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝐿 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑅 ) )  -s  ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝐿 ) )  ·s  𝑧𝑅 ) ) } ) )  =  ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) ) } )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) ) } ) ) ) | 
						
							| 69 |  | un4 | ⊢ ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) ) } )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) ) } ) )  =  ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) ) } )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) ) } ) ) | 
						
							| 70 |  | uncom | ⊢ ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) ) } )  =  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) ) } ) | 
						
							| 71 | 70 | uneq2i | ⊢ ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) ) } )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) ) } ) )  =  ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) ) } )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) ) } ) ) | 
						
							| 72 | 69 71 | eqtri | ⊢ ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) ) } )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) ) } ) )  =  ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) ) } )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) ) } ) ) | 
						
							| 73 | 68 72 | eqtrdi | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) ) )  →  ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝐿 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝐿 ) )  -s  ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝐿 ) )  ·s  𝑧𝐿 ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝑅 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝐿 ) )  -s  ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝑅 ) )  ·s  𝑧𝐿 ) ) } )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝑅 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑅 ) )  -s  ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝑅 ) )  ·s  𝑧𝑅 ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝐿 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑅 ) )  -s  ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝐿 ) )  ·s  𝑧𝑅 ) ) } ) )  =  ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) ) } )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) ) } ) ) ) | 
						
							| 74 | 42 43 44 45 46 62 48 49 50 51 52 53 54 | mulsasslem3 | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) ) )  →  ( ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝐿 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑅 ) )  -s  ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝐿 ) )  ·s  𝑧𝑅 ) )  ↔  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) ) ) ) | 
						
							| 75 | 74 | abbidv | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) ) )  →  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝐿 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑅 ) )  -s  ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝐿 ) )  ·s  𝑧𝑅 ) ) }  =  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) ) } ) | 
						
							| 76 | 42 43 44 57 58 62 48 49 50 51 52 53 54 | mulsasslem3 | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) ) )  →  ( ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝑅 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑅 ) )  -s  ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝑅 ) )  ·s  𝑧𝑅 ) )  ↔  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) ) ) ) | 
						
							| 77 | 76 | abbidv | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) ) )  →  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝑅 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑅 ) )  -s  ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝑅 ) )  ·s  𝑧𝑅 ) ) }  =  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) ) } ) | 
						
							| 78 | 75 77 | uneq12d | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) ) )  →  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝐿 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑅 ) )  -s  ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝐿 ) )  ·s  𝑧𝑅 ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝑅 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑅 ) )  -s  ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝑅 ) )  ·s  𝑧𝑅 ) ) } )  =  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) ) } ) ) | 
						
							| 79 | 42 43 44 45 58 47 48 49 50 51 52 53 54 | mulsasslem3 | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) ) )  →  ( ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝑅 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝐿 ) )  -s  ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝑅 ) )  ·s  𝑧𝐿 ) )  ↔  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) ) ) ) | 
						
							| 80 | 79 | abbidv | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) ) )  →  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝑅 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝐿 ) )  -s  ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝑅 ) )  ·s  𝑧𝐿 ) ) }  =  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) ) } ) | 
						
							| 81 | 42 43 44 57 46 47 48 49 50 51 52 53 54 | mulsasslem3 | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) ) )  →  ( ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝐿 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝐿 ) )  -s  ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝐿 ) )  ·s  𝑧𝐿 ) )  ↔  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) ) ) ) | 
						
							| 82 | 81 | abbidv | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) ) )  →  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝐿 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝐿 ) )  -s  ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝐿 ) )  ·s  𝑧𝐿 ) ) }  =  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) ) } ) | 
						
							| 83 | 80 82 | uneq12d | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) ) )  →  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝑅 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝐿 ) )  -s  ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝑅 ) )  ·s  𝑧𝐿 ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝐿 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝐿 ) )  -s  ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝐿 ) )  ·s  𝑧𝐿 ) ) } )  =  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) ) } ) ) | 
						
							| 84 | 78 83 | uneq12d | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) ) )  →  ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝐿 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑅 ) )  -s  ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝐿 ) )  ·s  𝑧𝑅 ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝑅 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑅 ) )  -s  ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝑅 ) )  ·s  𝑧𝑅 ) ) } )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝑅 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝐿 ) )  -s  ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝑅 ) )  ·s  𝑧𝐿 ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝐿 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝐿 ) )  -s  ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝐿 ) )  ·s  𝑧𝐿 ) ) } ) )  =  ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) ) } )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) ) } ) ) ) | 
						
							| 85 |  | un4 | ⊢ ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) ) } )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) ) } ) )  =  ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) ) } )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) ) } ) ) | 
						
							| 86 |  | uncom | ⊢ ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) ) } )  =  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) ) } ) | 
						
							| 87 | 86 | uneq2i | ⊢ ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) ) } )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) ) } ) )  =  ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) ) } )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) ) } ) ) | 
						
							| 88 | 85 87 | eqtri | ⊢ ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) ) } )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) ) } ) )  =  ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) ) } )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) ) } ) ) | 
						
							| 89 | 84 88 | eqtrdi | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) ) )  →  ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝐿 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑅 ) )  -s  ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝐿 ) )  ·s  𝑧𝑅 ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝑅 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑅 ) )  -s  ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝑅 ) )  ·s  𝑧𝑅 ) ) } )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝑅 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝐿 ) )  -s  ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝑅 ) )  ·s  𝑧𝐿 ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝐿 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝐿 ) )  -s  ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝐿 ) )  ·s  𝑧𝐿 ) ) } ) )  =  ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) ) } )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) ) } ) ) ) | 
						
							| 90 | 73 89 | oveq12d | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) ) )  →  ( ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝐿 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝐿 ) )  -s  ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝐿 ) )  ·s  𝑧𝐿 ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝑅 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝐿 ) )  -s  ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝑅 ) )  ·s  𝑧𝐿 ) ) } )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝑅 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑅 ) )  -s  ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝑅 ) )  ·s  𝑧𝑅 ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝐿 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑅 ) )  -s  ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝐿 ) )  ·s  𝑧𝑅 ) ) } ) )  |s  ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝐿 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑅 ) )  -s  ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝐿 ) )  ·s  𝑧𝑅 ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝑅 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑅 ) )  -s  ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝑅 ) )  ·s  𝑧𝑅 ) ) } )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝑅 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝐿 ) )  -s  ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝑅 ) )  ·s  𝑧𝐿 ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝐿 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝐿 ) )  -s  ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝐿 ) )  ·s  𝑧𝐿 ) ) } ) ) )  =  ( ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) ) } )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) ) } ) )  |s  ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) ) } )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) ) } ) ) ) ) | 
						
							| 91 | 42 43 44 | mulsasslem1 | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) ) )  →  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧 )  =  ( ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝐿 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝐿 ) )  -s  ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝐿 ) )  ·s  𝑧𝐿 ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝑅 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝐿 ) )  -s  ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝑅 ) )  ·s  𝑧𝐿 ) ) } )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝑅 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑅 ) )  -s  ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝑅 ) )  ·s  𝑧𝑅 ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝐿 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑅 ) )  -s  ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝐿 ) )  ·s  𝑧𝑅 ) ) } ) )  |s  ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝐿 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑅 ) )  -s  ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝐿 ) )  ·s  𝑧𝑅 ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝑅 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑅 ) )  -s  ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝑅 ) )  ·s  𝑧𝑅 ) ) } )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝑅 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝐿 ) )  -s  ( ( ( ( 𝑥𝐿  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝑅 ) )  -s  ( 𝑥𝐿  ·s  𝑦𝑅 ) )  ·s  𝑧𝐿 ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝐿 ) )  ·s  𝑧 )  +s  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝐿 ) )  -s  ( ( ( ( 𝑥𝑅  ·s  𝑦 )  +s  ( 𝑥  ·s  𝑦𝐿 ) )  -s  ( 𝑥𝑅  ·s  𝑦𝐿 ) )  ·s  𝑧𝐿 ) ) } ) ) ) ) | 
						
							| 92 | 42 43 44 | mulsasslem2 | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) ) )  →  ( 𝑥  ·s  ( 𝑦  ·s  𝑧 ) )  =  ( ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) ) } )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) ) } ) )  |s  ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝑅 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝐿  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝐿  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝐿 ) ) ) ) } )  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝐿  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝐿 ) )  -s  ( 𝑦𝐿  ·s  𝑧𝐿 ) ) ) ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑎  =  ( ( ( 𝑥𝑅  ·s  ( 𝑦  ·s  𝑧 ) )  +s  ( 𝑥  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) )  -s  ( 𝑥𝑅  ·s  ( ( ( 𝑦𝑅  ·s  𝑧 )  +s  ( 𝑦  ·s  𝑧𝑅 ) )  -s  ( 𝑦𝑅  ·s  𝑧𝑅 ) ) ) ) } ) ) ) ) | 
						
							| 93 | 90 91 92 | 3eqtr4d | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) ) )  →  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧 ) ) ) | 
						
							| 94 | 93 | ex | ⊢ ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  →  ( ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦𝑂  ·s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥𝑂  ·s  ( 𝑦  ·s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  ·s  𝑦𝑂 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦𝑂  ·s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  ·s  𝑦 )  ·s  𝑧𝑂 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧𝑂 ) ) )  →  ( ( 𝑥  ·s  𝑦 )  ·s  𝑧 )  =  ( 𝑥  ·s  ( 𝑦  ·s  𝑧 ) ) ) ) | 
						
							| 95 | 4 9 13 17 22 25 28 32 37 41 94 | no3inds | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( ( 𝐴  ·s  𝐵 )  ·s  𝐶 )  =  ( 𝐴  ·s  ( 𝐵  ·s  𝐶 ) ) ) |