| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 | ⊢ ( 𝑥  =  𝑥𝑂  →  ( 𝑥  +s  𝑦 )  =  ( 𝑥𝑂  +s  𝑦 ) ) | 
						
							| 2 | 1 | oveq1d | ⊢ ( 𝑥  =  𝑥𝑂  →  ( ( 𝑥  +s  𝑦 )  +s  𝑧 )  =  ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 ) ) | 
						
							| 3 |  | oveq1 | ⊢ ( 𝑥  =  𝑥𝑂  →  ( 𝑥  +s  ( 𝑦  +s  𝑧 ) )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) ) ) | 
						
							| 4 | 2 3 | eqeq12d | ⊢ ( 𝑥  =  𝑥𝑂  →  ( ( ( 𝑥  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧 ) )  ↔  ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) ) ) ) | 
						
							| 5 |  | oveq2 | ⊢ ( 𝑦  =  𝑦𝑂  →  ( 𝑥𝑂  +s  𝑦 )  =  ( 𝑥𝑂  +s  𝑦𝑂 ) ) | 
						
							| 6 | 5 | oveq1d | ⊢ ( 𝑦  =  𝑦𝑂  →  ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( ( 𝑥𝑂  +s  𝑦𝑂 )  +s  𝑧 ) ) | 
						
							| 7 |  | oveq1 | ⊢ ( 𝑦  =  𝑦𝑂  →  ( 𝑦  +s  𝑧 )  =  ( 𝑦𝑂  +s  𝑧 ) ) | 
						
							| 8 | 7 | oveq2d | ⊢ ( 𝑦  =  𝑦𝑂  →  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  =  ( 𝑥𝑂  +s  ( 𝑦𝑂  +s  𝑧 ) ) ) | 
						
							| 9 | 6 8 | eqeq12d | ⊢ ( 𝑦  =  𝑦𝑂  →  ( ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ↔  ( ( 𝑥𝑂  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦𝑂  +s  𝑧 ) ) ) ) | 
						
							| 10 |  | oveq2 | ⊢ ( 𝑧  =  𝑧𝑂  →  ( ( 𝑥𝑂  +s  𝑦𝑂 )  +s  𝑧 )  =  ( ( 𝑥𝑂  +s  𝑦𝑂 )  +s  𝑧𝑂 ) ) | 
						
							| 11 |  | oveq2 | ⊢ ( 𝑧  =  𝑧𝑂  →  ( 𝑦𝑂  +s  𝑧 )  =  ( 𝑦𝑂  +s  𝑧𝑂 ) ) | 
						
							| 12 | 11 | oveq2d | ⊢ ( 𝑧  =  𝑧𝑂  →  ( 𝑥𝑂  +s  ( 𝑦𝑂  +s  𝑧 ) )  =  ( 𝑥𝑂  +s  ( 𝑦𝑂  +s  𝑧𝑂 ) ) ) | 
						
							| 13 | 10 12 | eqeq12d | ⊢ ( 𝑧  =  𝑧𝑂  →  ( ( ( 𝑥𝑂  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦𝑂  +s  𝑧 ) )  ↔  ( ( 𝑥𝑂  +s  𝑦𝑂 )  +s  𝑧𝑂 )  =  ( 𝑥𝑂  +s  ( 𝑦𝑂  +s  𝑧𝑂 ) ) ) ) | 
						
							| 14 |  | oveq1 | ⊢ ( 𝑥  =  𝑥𝑂  →  ( 𝑥  +s  𝑦𝑂 )  =  ( 𝑥𝑂  +s  𝑦𝑂 ) ) | 
						
							| 15 | 14 | oveq1d | ⊢ ( 𝑥  =  𝑥𝑂  →  ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧𝑂 )  =  ( ( 𝑥𝑂  +s  𝑦𝑂 )  +s  𝑧𝑂 ) ) | 
						
							| 16 |  | oveq1 | ⊢ ( 𝑥  =  𝑥𝑂  →  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧𝑂 ) )  =  ( 𝑥𝑂  +s  ( 𝑦𝑂  +s  𝑧𝑂 ) ) ) | 
						
							| 17 | 15 16 | eqeq12d | ⊢ ( 𝑥  =  𝑥𝑂  →  ( ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧𝑂 ) )  ↔  ( ( 𝑥𝑂  +s  𝑦𝑂 )  +s  𝑧𝑂 )  =  ( 𝑥𝑂  +s  ( 𝑦𝑂  +s  𝑧𝑂 ) ) ) ) | 
						
							| 18 |  | oveq2 | ⊢ ( 𝑦  =  𝑦𝑂  →  ( 𝑥  +s  𝑦 )  =  ( 𝑥  +s  𝑦𝑂 ) ) | 
						
							| 19 | 18 | oveq1d | ⊢ ( 𝑦  =  𝑦𝑂  →  ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧𝑂 ) ) | 
						
							| 20 |  | oveq1 | ⊢ ( 𝑦  =  𝑦𝑂  →  ( 𝑦  +s  𝑧𝑂 )  =  ( 𝑦𝑂  +s  𝑧𝑂 ) ) | 
						
							| 21 | 20 | oveq2d | ⊢ ( 𝑦  =  𝑦𝑂  →  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧𝑂 ) ) ) | 
						
							| 22 | 19 21 | eqeq12d | ⊢ ( 𝑦  =  𝑦𝑂  →  ( ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) )  ↔  ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧𝑂 ) ) ) ) | 
						
							| 23 | 5 | oveq1d | ⊢ ( 𝑦  =  𝑦𝑂  →  ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧𝑂 )  =  ( ( 𝑥𝑂  +s  𝑦𝑂 )  +s  𝑧𝑂 ) ) | 
						
							| 24 | 20 | oveq2d | ⊢ ( 𝑦  =  𝑦𝑂  →  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧𝑂 ) )  =  ( 𝑥𝑂  +s  ( 𝑦𝑂  +s  𝑧𝑂 ) ) ) | 
						
							| 25 | 23 24 | eqeq12d | ⊢ ( 𝑦  =  𝑦𝑂  →  ( ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧𝑂 ) )  ↔  ( ( 𝑥𝑂  +s  𝑦𝑂 )  +s  𝑧𝑂 )  =  ( 𝑥𝑂  +s  ( 𝑦𝑂  +s  𝑧𝑂 ) ) ) ) | 
						
							| 26 |  | oveq2 | ⊢ ( 𝑧  =  𝑧𝑂  →  ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧𝑂 ) ) | 
						
							| 27 | 11 | oveq2d | ⊢ ( 𝑧  =  𝑧𝑂  →  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧𝑂 ) ) ) | 
						
							| 28 | 26 27 | eqeq12d | ⊢ ( 𝑧  =  𝑧𝑂  →  ( ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ↔  ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧𝑂 ) ) ) ) | 
						
							| 29 |  | oveq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  +s  𝑦 )  =  ( 𝐴  +s  𝑦 ) ) | 
						
							| 30 | 29 | oveq1d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑥  +s  𝑦 )  +s  𝑧 )  =  ( ( 𝐴  +s  𝑦 )  +s  𝑧 ) ) | 
						
							| 31 |  | oveq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  +s  ( 𝑦  +s  𝑧 ) )  =  ( 𝐴  +s  ( 𝑦  +s  𝑧 ) ) ) | 
						
							| 32 | 30 31 | eqeq12d | ⊢ ( 𝑥  =  𝐴  →  ( ( ( 𝑥  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧 ) )  ↔  ( ( 𝐴  +s  𝑦 )  +s  𝑧 )  =  ( 𝐴  +s  ( 𝑦  +s  𝑧 ) ) ) ) | 
						
							| 33 |  | oveq2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝐴  +s  𝑦 )  =  ( 𝐴  +s  𝐵 ) ) | 
						
							| 34 | 33 | oveq1d | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝐴  +s  𝑦 )  +s  𝑧 )  =  ( ( 𝐴  +s  𝐵 )  +s  𝑧 ) ) | 
						
							| 35 |  | oveq1 | ⊢ ( 𝑦  =  𝐵  →  ( 𝑦  +s  𝑧 )  =  ( 𝐵  +s  𝑧 ) ) | 
						
							| 36 | 35 | oveq2d | ⊢ ( 𝑦  =  𝐵  →  ( 𝐴  +s  ( 𝑦  +s  𝑧 ) )  =  ( 𝐴  +s  ( 𝐵  +s  𝑧 ) ) ) | 
						
							| 37 | 34 36 | eqeq12d | ⊢ ( 𝑦  =  𝐵  →  ( ( ( 𝐴  +s  𝑦 )  +s  𝑧 )  =  ( 𝐴  +s  ( 𝑦  +s  𝑧 ) )  ↔  ( ( 𝐴  +s  𝐵 )  +s  𝑧 )  =  ( 𝐴  +s  ( 𝐵  +s  𝑧 ) ) ) ) | 
						
							| 38 |  | oveq2 | ⊢ ( 𝑧  =  𝐶  →  ( ( 𝐴  +s  𝐵 )  +s  𝑧 )  =  ( ( 𝐴  +s  𝐵 )  +s  𝐶 ) ) | 
						
							| 39 |  | oveq2 | ⊢ ( 𝑧  =  𝐶  →  ( 𝐵  +s  𝑧 )  =  ( 𝐵  +s  𝐶 ) ) | 
						
							| 40 | 39 | oveq2d | ⊢ ( 𝑧  =  𝐶  →  ( 𝐴  +s  ( 𝐵  +s  𝑧 ) )  =  ( 𝐴  +s  ( 𝐵  +s  𝐶 ) ) ) | 
						
							| 41 | 38 40 | eqeq12d | ⊢ ( 𝑧  =  𝐶  →  ( ( ( 𝐴  +s  𝐵 )  +s  𝑧 )  =  ( 𝐴  +s  ( 𝐵  +s  𝑧 ) )  ↔  ( ( 𝐴  +s  𝐵 )  +s  𝐶 )  =  ( 𝐴  +s  ( 𝐵  +s  𝐶 ) ) ) ) | 
						
							| 42 |  | simp21 | ⊢ ( ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  +s  𝑦𝑂 )  +s  𝑧𝑂 )  =  ( 𝑥𝑂  +s  ( 𝑦𝑂  +s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) )  →  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) ) ) | 
						
							| 43 |  | simp23 | ⊢ ( ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  +s  𝑦𝑂 )  +s  𝑧𝑂 )  =  ( 𝑥𝑂  +s  ( 𝑦𝑂  +s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) )  →  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) ) ) | 
						
							| 44 |  | simp3 | ⊢ ( ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  +s  𝑦𝑂 )  +s  𝑧𝑂 )  =  ( 𝑥𝑂  +s  ( 𝑦𝑂  +s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) )  →  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) | 
						
							| 45 | 42 43 44 | 3jca | ⊢ ( ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  +s  𝑦𝑂 )  +s  𝑧𝑂 )  =  ( 𝑥𝑂  +s  ( 𝑦𝑂  +s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) )  →  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) ) | 
						
							| 46 |  | oveq1 | ⊢ ( 𝑥𝑂  =  𝑥𝐿  →  ( 𝑥𝑂  +s  𝑦 )  =  ( 𝑥𝐿  +s  𝑦 ) ) | 
						
							| 47 | 46 | oveq1d | ⊢ ( 𝑥𝑂  =  𝑥𝐿  →  ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( ( 𝑥𝐿  +s  𝑦 )  +s  𝑧 ) ) | 
						
							| 48 |  | oveq1 | ⊢ ( 𝑥𝑂  =  𝑥𝐿  →  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  =  ( 𝑥𝐿  +s  ( 𝑦  +s  𝑧 ) ) ) | 
						
							| 49 | 47 48 | eqeq12d | ⊢ ( 𝑥𝑂  =  𝑥𝐿  →  ( ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ↔  ( ( 𝑥𝐿  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝐿  +s  ( 𝑦  +s  𝑧 ) ) ) ) | 
						
							| 50 |  | simplr1 | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝑥 ) )  →  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) ) ) | 
						
							| 51 |  | elun1 | ⊢ ( 𝑥𝐿  ∈  (  L  ‘ 𝑥 )  →  𝑥𝐿  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ) | 
						
							| 52 | 51 | adantl | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝑥 ) )  →  𝑥𝐿  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ) | 
						
							| 53 | 49 50 52 | rspcdva | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝑥 ) )  →  ( ( 𝑥𝐿  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝐿  +s  ( 𝑦  +s  𝑧 ) ) ) | 
						
							| 54 | 53 | eqeq2d | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝑥 ) )  →  ( 𝑎  =  ( ( 𝑥𝐿  +s  𝑦 )  +s  𝑧 )  ↔  𝑎  =  ( 𝑥𝐿  +s  ( 𝑦  +s  𝑧 ) ) ) ) | 
						
							| 55 | 54 | rexbidva | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  →  ( ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( ( 𝑥𝐿  +s  𝑦 )  +s  𝑧 )  ↔  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  ( 𝑦  +s  𝑧 ) ) ) ) | 
						
							| 56 | 55 | abbidv | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  →  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( ( 𝑥𝐿  +s  𝑦 )  +s  𝑧 ) }  =  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  ( 𝑦  +s  𝑧 ) ) } ) | 
						
							| 57 |  | oveq2 | ⊢ ( 𝑦𝑂  =  𝑦𝐿  →  ( 𝑥  +s  𝑦𝑂 )  =  ( 𝑥  +s  𝑦𝐿 ) ) | 
						
							| 58 | 57 | oveq1d | ⊢ ( 𝑦𝑂  =  𝑦𝐿  →  ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( ( 𝑥  +s  𝑦𝐿 )  +s  𝑧 ) ) | 
						
							| 59 |  | oveq1 | ⊢ ( 𝑦𝑂  =  𝑦𝐿  →  ( 𝑦𝑂  +s  𝑧 )  =  ( 𝑦𝐿  +s  𝑧 ) ) | 
						
							| 60 | 59 | oveq2d | ⊢ ( 𝑦𝑂  =  𝑦𝐿  →  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  =  ( 𝑥  +s  ( 𝑦𝐿  +s  𝑧 ) ) ) | 
						
							| 61 | 58 60 | eqeq12d | ⊢ ( 𝑦𝑂  =  𝑦𝐿  →  ( ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ↔  ( ( 𝑥  +s  𝑦𝐿 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝐿  +s  𝑧 ) ) ) ) | 
						
							| 62 |  | simplr2 | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  ∧  𝑦𝐿  ∈  (  L  ‘ 𝑦 ) )  →  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) ) ) | 
						
							| 63 |  | elun1 | ⊢ ( 𝑦𝐿  ∈  (  L  ‘ 𝑦 )  →  𝑦𝐿  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ) | 
						
							| 64 | 63 | adantl | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  ∧  𝑦𝐿  ∈  (  L  ‘ 𝑦 ) )  →  𝑦𝐿  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ) | 
						
							| 65 | 61 62 64 | rspcdva | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  ∧  𝑦𝐿  ∈  (  L  ‘ 𝑦 ) )  →  ( ( 𝑥  +s  𝑦𝐿 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝐿  +s  𝑧 ) ) ) | 
						
							| 66 | 65 | eqeq2d | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  ∧  𝑦𝐿  ∈  (  L  ‘ 𝑦 ) )  →  ( 𝑏  =  ( ( 𝑥  +s  𝑦𝐿 )  +s  𝑧 )  ↔  𝑏  =  ( 𝑥  +s  ( 𝑦𝐿  +s  𝑧 ) ) ) ) | 
						
							| 67 | 66 | rexbidva | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  →  ( ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) 𝑏  =  ( ( 𝑥  +s  𝑦𝐿 )  +s  𝑧 )  ↔  ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) 𝑏  =  ( 𝑥  +s  ( 𝑦𝐿  +s  𝑧 ) ) ) ) | 
						
							| 68 | 67 | abbidv | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  →  { 𝑏  ∣  ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) 𝑏  =  ( ( 𝑥  +s  𝑦𝐿 )  +s  𝑧 ) }  =  { 𝑏  ∣  ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) 𝑏  =  ( 𝑥  +s  ( 𝑦𝐿  +s  𝑧 ) ) } ) | 
						
							| 69 | 56 68 | uneq12d | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  →  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( ( 𝑥𝐿  +s  𝑦 )  +s  𝑧 ) }  ∪  { 𝑏  ∣  ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) 𝑏  =  ( ( 𝑥  +s  𝑦𝐿 )  +s  𝑧 ) } )  =  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  ( 𝑦  +s  𝑧 ) ) }  ∪  { 𝑏  ∣  ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) 𝑏  =  ( 𝑥  +s  ( 𝑦𝐿  +s  𝑧 ) ) } ) ) | 
						
							| 70 |  | oveq2 | ⊢ ( 𝑧𝑂  =  𝑧𝐿  →  ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( ( 𝑥  +s  𝑦 )  +s  𝑧𝐿 ) ) | 
						
							| 71 |  | oveq2 | ⊢ ( 𝑧𝑂  =  𝑧𝐿  →  ( 𝑦  +s  𝑧𝑂 )  =  ( 𝑦  +s  𝑧𝐿 ) ) | 
						
							| 72 | 71 | oveq2d | ⊢ ( 𝑧𝑂  =  𝑧𝐿  →  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝐿 ) ) ) | 
						
							| 73 | 70 72 | eqeq12d | ⊢ ( 𝑧𝑂  =  𝑧𝐿  →  ( ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) )  ↔  ( ( 𝑥  +s  𝑦 )  +s  𝑧𝐿 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝐿 ) ) ) ) | 
						
							| 74 |  | simplr3 | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  ∧  𝑧𝐿  ∈  (  L  ‘ 𝑧 ) )  →  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) | 
						
							| 75 |  | elun1 | ⊢ ( 𝑧𝐿  ∈  (  L  ‘ 𝑧 )  →  𝑧𝐿  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ) | 
						
							| 76 | 75 | adantl | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  ∧  𝑧𝐿  ∈  (  L  ‘ 𝑧 ) )  →  𝑧𝐿  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ) | 
						
							| 77 | 73 74 76 | rspcdva | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  ∧  𝑧𝐿  ∈  (  L  ‘ 𝑧 ) )  →  ( ( 𝑥  +s  𝑦 )  +s  𝑧𝐿 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝐿 ) ) ) | 
						
							| 78 | 77 | eqeq2d | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  ∧  𝑧𝐿  ∈  (  L  ‘ 𝑧 ) )  →  ( 𝑐  =  ( ( 𝑥  +s  𝑦 )  +s  𝑧𝐿 )  ↔  𝑐  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝐿 ) ) ) ) | 
						
							| 79 | 78 | rexbidva | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  →  ( ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑐  =  ( ( 𝑥  +s  𝑦 )  +s  𝑧𝐿 )  ↔  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑐  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝐿 ) ) ) ) | 
						
							| 80 | 79 | abbidv | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  →  { 𝑐  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑐  =  ( ( 𝑥  +s  𝑦 )  +s  𝑧𝐿 ) }  =  { 𝑐  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑐  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝐿 ) ) } ) | 
						
							| 81 | 69 80 | uneq12d | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  →  ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( ( 𝑥𝐿  +s  𝑦 )  +s  𝑧 ) }  ∪  { 𝑏  ∣  ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) 𝑏  =  ( ( 𝑥  +s  𝑦𝐿 )  +s  𝑧 ) } )  ∪  { 𝑐  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑐  =  ( ( 𝑥  +s  𝑦 )  +s  𝑧𝐿 ) } )  =  ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  ( 𝑦  +s  𝑧 ) ) }  ∪  { 𝑏  ∣  ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) 𝑏  =  ( 𝑥  +s  ( 𝑦𝐿  +s  𝑧 ) ) } )  ∪  { 𝑐  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑐  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝐿 ) ) } ) ) | 
						
							| 82 |  | oveq1 | ⊢ ( 𝑥𝑂  =  𝑥𝑅  →  ( 𝑥𝑂  +s  𝑦 )  =  ( 𝑥𝑅  +s  𝑦 ) ) | 
						
							| 83 | 82 | oveq1d | ⊢ ( 𝑥𝑂  =  𝑥𝑅  →  ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( ( 𝑥𝑅  +s  𝑦 )  +s  𝑧 ) ) | 
						
							| 84 |  | oveq1 | ⊢ ( 𝑥𝑂  =  𝑥𝑅  →  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  =  ( 𝑥𝑅  +s  ( 𝑦  +s  𝑧 ) ) ) | 
						
							| 85 | 83 84 | eqeq12d | ⊢ ( 𝑥𝑂  =  𝑥𝑅  →  ( ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ↔  ( ( 𝑥𝑅  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑅  +s  ( 𝑦  +s  𝑧 ) ) ) ) | 
						
							| 86 |  | simplr1 | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  ∧  𝑥𝑅  ∈  (  R  ‘ 𝑥 ) )  →  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) ) ) | 
						
							| 87 |  | elun2 | ⊢ ( 𝑥𝑅  ∈  (  R  ‘ 𝑥 )  →  𝑥𝑅  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ) | 
						
							| 88 | 87 | adantl | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  ∧  𝑥𝑅  ∈  (  R  ‘ 𝑥 ) )  →  𝑥𝑅  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ) | 
						
							| 89 | 85 86 88 | rspcdva | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  ∧  𝑥𝑅  ∈  (  R  ‘ 𝑥 ) )  →  ( ( 𝑥𝑅  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑅  +s  ( 𝑦  +s  𝑧 ) ) ) | 
						
							| 90 | 89 | eqeq2d | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  ∧  𝑥𝑅  ∈  (  R  ‘ 𝑥 ) )  →  ( 𝑑  =  ( ( 𝑥𝑅  +s  𝑦 )  +s  𝑧 )  ↔  𝑑  =  ( 𝑥𝑅  +s  ( 𝑦  +s  𝑧 ) ) ) ) | 
						
							| 91 | 90 | rexbidva | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  →  ( ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑑  =  ( ( 𝑥𝑅  +s  𝑦 )  +s  𝑧 )  ↔  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑑  =  ( 𝑥𝑅  +s  ( 𝑦  +s  𝑧 ) ) ) ) | 
						
							| 92 | 91 | abbidv | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  →  { 𝑑  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑑  =  ( ( 𝑥𝑅  +s  𝑦 )  +s  𝑧 ) }  =  { 𝑑  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑑  =  ( 𝑥𝑅  +s  ( 𝑦  +s  𝑧 ) ) } ) | 
						
							| 93 |  | oveq2 | ⊢ ( 𝑦𝑂  =  𝑦𝑅  →  ( 𝑥  +s  𝑦𝑂 )  =  ( 𝑥  +s  𝑦𝑅 ) ) | 
						
							| 94 | 93 | oveq1d | ⊢ ( 𝑦𝑂  =  𝑦𝑅  →  ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( ( 𝑥  +s  𝑦𝑅 )  +s  𝑧 ) ) | 
						
							| 95 |  | oveq1 | ⊢ ( 𝑦𝑂  =  𝑦𝑅  →  ( 𝑦𝑂  +s  𝑧 )  =  ( 𝑦𝑅  +s  𝑧 ) ) | 
						
							| 96 | 95 | oveq2d | ⊢ ( 𝑦𝑂  =  𝑦𝑅  →  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  =  ( 𝑥  +s  ( 𝑦𝑅  +s  𝑧 ) ) ) | 
						
							| 97 | 94 96 | eqeq12d | ⊢ ( 𝑦𝑂  =  𝑦𝑅  →  ( ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ↔  ( ( 𝑥  +s  𝑦𝑅 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑅  +s  𝑧 ) ) ) ) | 
						
							| 98 |  | simplr2 | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  ∧  𝑦𝑅  ∈  (  R  ‘ 𝑦 ) )  →  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) ) ) | 
						
							| 99 |  | elun2 | ⊢ ( 𝑦𝑅  ∈  (  R  ‘ 𝑦 )  →  𝑦𝑅  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ) | 
						
							| 100 | 99 | adantl | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  ∧  𝑦𝑅  ∈  (  R  ‘ 𝑦 ) )  →  𝑦𝑅  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ) | 
						
							| 101 | 97 98 100 | rspcdva | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  ∧  𝑦𝑅  ∈  (  R  ‘ 𝑦 ) )  →  ( ( 𝑥  +s  𝑦𝑅 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑅  +s  𝑧 ) ) ) | 
						
							| 102 | 101 | eqeq2d | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  ∧  𝑦𝑅  ∈  (  R  ‘ 𝑦 ) )  →  ( 𝑒  =  ( ( 𝑥  +s  𝑦𝑅 )  +s  𝑧 )  ↔  𝑒  =  ( 𝑥  +s  ( 𝑦𝑅  +s  𝑧 ) ) ) ) | 
						
							| 103 | 102 | rexbidva | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  →  ( ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) 𝑒  =  ( ( 𝑥  +s  𝑦𝑅 )  +s  𝑧 )  ↔  ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) 𝑒  =  ( 𝑥  +s  ( 𝑦𝑅  +s  𝑧 ) ) ) ) | 
						
							| 104 | 103 | abbidv | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  →  { 𝑒  ∣  ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) 𝑒  =  ( ( 𝑥  +s  𝑦𝑅 )  +s  𝑧 ) }  =  { 𝑒  ∣  ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) 𝑒  =  ( 𝑥  +s  ( 𝑦𝑅  +s  𝑧 ) ) } ) | 
						
							| 105 | 92 104 | uneq12d | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  →  ( { 𝑑  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑑  =  ( ( 𝑥𝑅  +s  𝑦 )  +s  𝑧 ) }  ∪  { 𝑒  ∣  ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) 𝑒  =  ( ( 𝑥  +s  𝑦𝑅 )  +s  𝑧 ) } )  =  ( { 𝑑  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑑  =  ( 𝑥𝑅  +s  ( 𝑦  +s  𝑧 ) ) }  ∪  { 𝑒  ∣  ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) 𝑒  =  ( 𝑥  +s  ( 𝑦𝑅  +s  𝑧 ) ) } ) ) | 
						
							| 106 |  | oveq2 | ⊢ ( 𝑧𝑂  =  𝑧𝑅  →  ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑅 ) ) | 
						
							| 107 |  | oveq2 | ⊢ ( 𝑧𝑂  =  𝑧𝑅  →  ( 𝑦  +s  𝑧𝑂 )  =  ( 𝑦  +s  𝑧𝑅 ) ) | 
						
							| 108 | 107 | oveq2d | ⊢ ( 𝑧𝑂  =  𝑧𝑅  →  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑅 ) ) ) | 
						
							| 109 | 106 108 | eqeq12d | ⊢ ( 𝑧𝑂  =  𝑧𝑅  →  ( ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) )  ↔  ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑅 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑅 ) ) ) ) | 
						
							| 110 |  | simplr3 | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  ∧  𝑧𝑅  ∈  (  R  ‘ 𝑧 ) )  →  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) | 
						
							| 111 |  | elun2 | ⊢ ( 𝑧𝑅  ∈  (  R  ‘ 𝑧 )  →  𝑧𝑅  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ) | 
						
							| 112 | 111 | adantl | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  ∧  𝑧𝑅  ∈  (  R  ‘ 𝑧 ) )  →  𝑧𝑅  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ) | 
						
							| 113 | 109 110 112 | rspcdva | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  ∧  𝑧𝑅  ∈  (  R  ‘ 𝑧 ) )  →  ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑅 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑅 ) ) ) | 
						
							| 114 | 113 | eqeq2d | ⊢ ( ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  ∧  𝑧𝑅  ∈  (  R  ‘ 𝑧 ) )  →  ( 𝑓  =  ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑅 )  ↔  𝑓  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑅 ) ) ) ) | 
						
							| 115 | 114 | rexbidva | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  →  ( ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑓  =  ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑅 )  ↔  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑓  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑅 ) ) ) ) | 
						
							| 116 | 115 | abbidv | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  →  { 𝑓  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑓  =  ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑅 ) }  =  { 𝑓  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑓  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑅 ) ) } ) | 
						
							| 117 | 105 116 | uneq12d | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  →  ( ( { 𝑑  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑑  =  ( ( 𝑥𝑅  +s  𝑦 )  +s  𝑧 ) }  ∪  { 𝑒  ∣  ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) 𝑒  =  ( ( 𝑥  +s  𝑦𝑅 )  +s  𝑧 ) } )  ∪  { 𝑓  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑓  =  ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑅 ) } )  =  ( ( { 𝑑  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑑  =  ( 𝑥𝑅  +s  ( 𝑦  +s  𝑧 ) ) }  ∪  { 𝑒  ∣  ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) 𝑒  =  ( 𝑥  +s  ( 𝑦𝑅  +s  𝑧 ) ) } )  ∪  { 𝑓  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑓  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑅 ) ) } ) ) | 
						
							| 118 | 81 117 | oveq12d | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  →  ( ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( ( 𝑥𝐿  +s  𝑦 )  +s  𝑧 ) }  ∪  { 𝑏  ∣  ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) 𝑏  =  ( ( 𝑥  +s  𝑦𝐿 )  +s  𝑧 ) } )  ∪  { 𝑐  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑐  =  ( ( 𝑥  +s  𝑦 )  +s  𝑧𝐿 ) } )  |s  ( ( { 𝑑  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑑  =  ( ( 𝑥𝑅  +s  𝑦 )  +s  𝑧 ) }  ∪  { 𝑒  ∣  ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) 𝑒  =  ( ( 𝑥  +s  𝑦𝑅 )  +s  𝑧 ) } )  ∪  { 𝑓  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑓  =  ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑅 ) } ) )  =  ( ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  ( 𝑦  +s  𝑧 ) ) }  ∪  { 𝑏  ∣  ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) 𝑏  =  ( 𝑥  +s  ( 𝑦𝐿  +s  𝑧 ) ) } )  ∪  { 𝑐  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑐  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝐿 ) ) } )  |s  ( ( { 𝑑  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑑  =  ( 𝑥𝑅  +s  ( 𝑦  +s  𝑧 ) ) }  ∪  { 𝑒  ∣  ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) 𝑒  =  ( 𝑥  +s  ( 𝑦𝑅  +s  𝑧 ) ) } )  ∪  { 𝑓  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑓  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑅 ) ) } ) ) ) | 
						
							| 119 |  | simpl1 | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  →  𝑥  ∈   No  ) | 
						
							| 120 |  | simpl2 | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  →  𝑦  ∈   No  ) | 
						
							| 121 |  | simpl3 | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  →  𝑧  ∈   No  ) | 
						
							| 122 | 119 120 121 | addsasslem1 | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  →  ( ( 𝑥  +s  𝑦 )  +s  𝑧 )  =  ( ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( ( 𝑥𝐿  +s  𝑦 )  +s  𝑧 ) }  ∪  { 𝑏  ∣  ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) 𝑏  =  ( ( 𝑥  +s  𝑦𝐿 )  +s  𝑧 ) } )  ∪  { 𝑐  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑐  =  ( ( 𝑥  +s  𝑦 )  +s  𝑧𝐿 ) } )  |s  ( ( { 𝑑  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑑  =  ( ( 𝑥𝑅  +s  𝑦 )  +s  𝑧 ) }  ∪  { 𝑒  ∣  ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) 𝑒  =  ( ( 𝑥  +s  𝑦𝑅 )  +s  𝑧 ) } )  ∪  { 𝑓  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑓  =  ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑅 ) } ) ) ) | 
						
							| 123 | 119 120 121 | addsasslem2 | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  →  ( 𝑥  +s  ( 𝑦  +s  𝑧 ) )  =  ( ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  ( 𝑦  +s  𝑧 ) ) }  ∪  { 𝑏  ∣  ∃ 𝑦𝐿  ∈  (  L  ‘ 𝑦 ) 𝑏  =  ( 𝑥  +s  ( 𝑦𝐿  +s  𝑧 ) ) } )  ∪  { 𝑐  ∣  ∃ 𝑧𝐿  ∈  (  L  ‘ 𝑧 ) 𝑐  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝐿 ) ) } )  |s  ( ( { 𝑑  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑑  =  ( 𝑥𝑅  +s  ( 𝑦  +s  𝑧 ) ) }  ∪  { 𝑒  ∣  ∃ 𝑦𝑅  ∈  (  R  ‘ 𝑦 ) 𝑒  =  ( 𝑥  +s  ( 𝑦𝑅  +s  𝑧 ) ) } )  ∪  { 𝑓  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝑧 ) 𝑓  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑅 ) ) } ) ) ) | 
						
							| 124 | 118 122 123 | 3eqtr4d | ⊢ ( ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) ) )  →  ( ( 𝑥  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧 ) ) ) | 
						
							| 125 | 124 | ex | ⊢ ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  →  ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) )  →  ( ( 𝑥  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧 ) ) ) ) | 
						
							| 126 | 45 125 | syl5 | ⊢ ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No   ∧  𝑧  ∈   No  )  →  ( ( ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  +s  𝑦𝑂 )  +s  𝑧𝑂 )  =  ( 𝑥𝑂  +s  ( 𝑦𝑂  +s  𝑧𝑂 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥𝑂  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦𝑂  +s  𝑧 ) )  ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧𝑂 ) ) )  ∧  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( ( 𝑥𝑂  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥𝑂  +s  ( 𝑦  +s  𝑧 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧𝑂 ) )  ∧  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) ( ( 𝑥  +s  𝑦𝑂 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦𝑂  +s  𝑧 ) ) )  ∧  ∀ 𝑧𝑂  ∈  ( (  L  ‘ 𝑧 )  ∪  (  R  ‘ 𝑧 ) ) ( ( 𝑥  +s  𝑦 )  +s  𝑧𝑂 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧𝑂 ) ) )  →  ( ( 𝑥  +s  𝑦 )  +s  𝑧 )  =  ( 𝑥  +s  ( 𝑦  +s  𝑧 ) ) ) ) | 
						
							| 127 | 4 9 13 17 22 25 28 32 37 41 126 | no3inds | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( ( 𝐴  +s  𝐵 )  +s  𝐶 )  =  ( 𝐴  +s  ( 𝐵  +s  𝐶 ) ) ) |