Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
⊢ ( 𝑥 = 𝑥𝑂 → ( 𝑥 +s 𝑦 ) = ( 𝑥𝑂 +s 𝑦 ) ) |
2 |
1
|
oveq1d |
⊢ ( 𝑥 = 𝑥𝑂 → ( ( 𝑥 +s 𝑦 ) +s 𝑧 ) = ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) ) |
3 |
|
oveq1 |
⊢ ( 𝑥 = 𝑥𝑂 → ( 𝑥 +s ( 𝑦 +s 𝑧 ) ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ) |
4 |
2 3
|
eqeq12d |
⊢ ( 𝑥 = 𝑥𝑂 → ( ( ( 𝑥 +s 𝑦 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦 +s 𝑧 ) ) ↔ ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ) ) |
5 |
|
oveq2 |
⊢ ( 𝑦 = 𝑦𝑂 → ( 𝑥𝑂 +s 𝑦 ) = ( 𝑥𝑂 +s 𝑦𝑂 ) ) |
6 |
5
|
oveq1d |
⊢ ( 𝑦 = 𝑦𝑂 → ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( ( 𝑥𝑂 +s 𝑦𝑂 ) +s 𝑧 ) ) |
7 |
|
oveq1 |
⊢ ( 𝑦 = 𝑦𝑂 → ( 𝑦 +s 𝑧 ) = ( 𝑦𝑂 +s 𝑧 ) ) |
8 |
7
|
oveq2d |
⊢ ( 𝑦 = 𝑦𝑂 → ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) = ( 𝑥𝑂 +s ( 𝑦𝑂 +s 𝑧 ) ) ) |
9 |
6 8
|
eqeq12d |
⊢ ( 𝑦 = 𝑦𝑂 → ( ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ↔ ( ( 𝑥𝑂 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦𝑂 +s 𝑧 ) ) ) ) |
10 |
|
oveq2 |
⊢ ( 𝑧 = 𝑧𝑂 → ( ( 𝑥𝑂 +s 𝑦𝑂 ) +s 𝑧 ) = ( ( 𝑥𝑂 +s 𝑦𝑂 ) +s 𝑧𝑂 ) ) |
11 |
|
oveq2 |
⊢ ( 𝑧 = 𝑧𝑂 → ( 𝑦𝑂 +s 𝑧 ) = ( 𝑦𝑂 +s 𝑧𝑂 ) ) |
12 |
11
|
oveq2d |
⊢ ( 𝑧 = 𝑧𝑂 → ( 𝑥𝑂 +s ( 𝑦𝑂 +s 𝑧 ) ) = ( 𝑥𝑂 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ) |
13 |
10 12
|
eqeq12d |
⊢ ( 𝑧 = 𝑧𝑂 → ( ( ( 𝑥𝑂 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦𝑂 +s 𝑧 ) ) ↔ ( ( 𝑥𝑂 +s 𝑦𝑂 ) +s 𝑧𝑂 ) = ( 𝑥𝑂 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ) ) |
14 |
|
oveq1 |
⊢ ( 𝑥 = 𝑥𝑂 → ( 𝑥 +s 𝑦𝑂 ) = ( 𝑥𝑂 +s 𝑦𝑂 ) ) |
15 |
14
|
oveq1d |
⊢ ( 𝑥 = 𝑥𝑂 → ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧𝑂 ) = ( ( 𝑥𝑂 +s 𝑦𝑂 ) +s 𝑧𝑂 ) ) |
16 |
|
oveq1 |
⊢ ( 𝑥 = 𝑥𝑂 → ( 𝑥 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) = ( 𝑥𝑂 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ) |
17 |
15 16
|
eqeq12d |
⊢ ( 𝑥 = 𝑥𝑂 → ( ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ↔ ( ( 𝑥𝑂 +s 𝑦𝑂 ) +s 𝑧𝑂 ) = ( 𝑥𝑂 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ) ) |
18 |
|
oveq2 |
⊢ ( 𝑦 = 𝑦𝑂 → ( 𝑥 +s 𝑦 ) = ( 𝑥 +s 𝑦𝑂 ) ) |
19 |
18
|
oveq1d |
⊢ ( 𝑦 = 𝑦𝑂 → ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧𝑂 ) ) |
20 |
|
oveq1 |
⊢ ( 𝑦 = 𝑦𝑂 → ( 𝑦 +s 𝑧𝑂 ) = ( 𝑦𝑂 +s 𝑧𝑂 ) ) |
21 |
20
|
oveq2d |
⊢ ( 𝑦 = 𝑦𝑂 → ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ) |
22 |
19 21
|
eqeq12d |
⊢ ( 𝑦 = 𝑦𝑂 → ( ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ↔ ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ) ) |
23 |
5
|
oveq1d |
⊢ ( 𝑦 = 𝑦𝑂 → ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧𝑂 ) = ( ( 𝑥𝑂 +s 𝑦𝑂 ) +s 𝑧𝑂 ) ) |
24 |
20
|
oveq2d |
⊢ ( 𝑦 = 𝑦𝑂 → ( 𝑥𝑂 +s ( 𝑦 +s 𝑧𝑂 ) ) = ( 𝑥𝑂 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ) |
25 |
23 24
|
eqeq12d |
⊢ ( 𝑦 = 𝑦𝑂 → ( ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧𝑂 ) ) ↔ ( ( 𝑥𝑂 +s 𝑦𝑂 ) +s 𝑧𝑂 ) = ( 𝑥𝑂 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ) ) |
26 |
|
oveq2 |
⊢ ( 𝑧 = 𝑧𝑂 → ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧𝑂 ) ) |
27 |
11
|
oveq2d |
⊢ ( 𝑧 = 𝑧𝑂 → ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ) |
28 |
26 27
|
eqeq12d |
⊢ ( 𝑧 = 𝑧𝑂 → ( ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ↔ ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ) ) |
29 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 +s 𝑦 ) = ( 𝐴 +s 𝑦 ) ) |
30 |
29
|
oveq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 +s 𝑦 ) +s 𝑧 ) = ( ( 𝐴 +s 𝑦 ) +s 𝑧 ) ) |
31 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 +s ( 𝑦 +s 𝑧 ) ) = ( 𝐴 +s ( 𝑦 +s 𝑧 ) ) ) |
32 |
30 31
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑥 +s 𝑦 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦 +s 𝑧 ) ) ↔ ( ( 𝐴 +s 𝑦 ) +s 𝑧 ) = ( 𝐴 +s ( 𝑦 +s 𝑧 ) ) ) ) |
33 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 +s 𝑦 ) = ( 𝐴 +s 𝐵 ) ) |
34 |
33
|
oveq1d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 +s 𝑦 ) +s 𝑧 ) = ( ( 𝐴 +s 𝐵 ) +s 𝑧 ) ) |
35 |
|
oveq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 +s 𝑧 ) = ( 𝐵 +s 𝑧 ) ) |
36 |
35
|
oveq2d |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 +s ( 𝑦 +s 𝑧 ) ) = ( 𝐴 +s ( 𝐵 +s 𝑧 ) ) ) |
37 |
34 36
|
eqeq12d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝐴 +s 𝑦 ) +s 𝑧 ) = ( 𝐴 +s ( 𝑦 +s 𝑧 ) ) ↔ ( ( 𝐴 +s 𝐵 ) +s 𝑧 ) = ( 𝐴 +s ( 𝐵 +s 𝑧 ) ) ) ) |
38 |
|
oveq2 |
⊢ ( 𝑧 = 𝐶 → ( ( 𝐴 +s 𝐵 ) +s 𝑧 ) = ( ( 𝐴 +s 𝐵 ) +s 𝐶 ) ) |
39 |
|
oveq2 |
⊢ ( 𝑧 = 𝐶 → ( 𝐵 +s 𝑧 ) = ( 𝐵 +s 𝐶 ) ) |
40 |
39
|
oveq2d |
⊢ ( 𝑧 = 𝐶 → ( 𝐴 +s ( 𝐵 +s 𝑧 ) ) = ( 𝐴 +s ( 𝐵 +s 𝐶 ) ) ) |
41 |
38 40
|
eqeq12d |
⊢ ( 𝑧 = 𝐶 → ( ( ( 𝐴 +s 𝐵 ) +s 𝑧 ) = ( 𝐴 +s ( 𝐵 +s 𝑧 ) ) ↔ ( ( 𝐴 +s 𝐵 ) +s 𝐶 ) = ( 𝐴 +s ( 𝐵 +s 𝐶 ) ) ) ) |
42 |
|
simp21 |
⊢ ( ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 +s 𝑦𝑂 ) +s 𝑧𝑂 ) = ( 𝑥𝑂 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ) |
43 |
|
simp23 |
⊢ ( ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 +s 𝑦𝑂 ) +s 𝑧𝑂 ) = ( 𝑥𝑂 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) → ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ) |
44 |
|
simp3 |
⊢ ( ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 +s 𝑦𝑂 ) +s 𝑧𝑂 ) = ( 𝑥𝑂 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) → ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) |
45 |
42 43 44
|
3jca |
⊢ ( ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 +s 𝑦𝑂 ) +s 𝑧𝑂 ) = ( 𝑥𝑂 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) → ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) |
46 |
|
oveq1 |
⊢ ( 𝑥𝑂 = 𝑥𝐿 → ( 𝑥𝑂 +s 𝑦 ) = ( 𝑥𝐿 +s 𝑦 ) ) |
47 |
46
|
oveq1d |
⊢ ( 𝑥𝑂 = 𝑥𝐿 → ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( ( 𝑥𝐿 +s 𝑦 ) +s 𝑧 ) ) |
48 |
|
oveq1 |
⊢ ( 𝑥𝑂 = 𝑥𝐿 → ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) = ( 𝑥𝐿 +s ( 𝑦 +s 𝑧 ) ) ) |
49 |
47 48
|
eqeq12d |
⊢ ( 𝑥𝑂 = 𝑥𝐿 → ( ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ↔ ( ( 𝑥𝐿 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝐿 +s ( 𝑦 +s 𝑧 ) ) ) ) |
50 |
|
simplr1 |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ) |
51 |
|
elun1 |
⊢ ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) → 𝑥𝐿 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ) |
52 |
51
|
adantl |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → 𝑥𝐿 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ) |
53 |
49 50 52
|
rspcdva |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( ( 𝑥𝐿 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝐿 +s ( 𝑦 +s 𝑧 ) ) ) |
54 |
53
|
eqeq2d |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( 𝑎 = ( ( 𝑥𝐿 +s 𝑦 ) +s 𝑧 ) ↔ 𝑎 = ( 𝑥𝐿 +s ( 𝑦 +s 𝑧 ) ) ) ) |
55 |
54
|
rexbidva |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( ( 𝑥𝐿 +s 𝑦 ) +s 𝑧 ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( 𝑦 +s 𝑧 ) ) ) ) |
56 |
55
|
abbidv |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( ( 𝑥𝐿 +s 𝑦 ) +s 𝑧 ) } = { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( 𝑦 +s 𝑧 ) ) } ) |
57 |
|
oveq2 |
⊢ ( 𝑦𝑂 = 𝑦𝐿 → ( 𝑥 +s 𝑦𝑂 ) = ( 𝑥 +s 𝑦𝐿 ) ) |
58 |
57
|
oveq1d |
⊢ ( 𝑦𝑂 = 𝑦𝐿 → ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( ( 𝑥 +s 𝑦𝐿 ) +s 𝑧 ) ) |
59 |
|
oveq1 |
⊢ ( 𝑦𝑂 = 𝑦𝐿 → ( 𝑦𝑂 +s 𝑧 ) = ( 𝑦𝐿 +s 𝑧 ) ) |
60 |
59
|
oveq2d |
⊢ ( 𝑦𝑂 = 𝑦𝐿 → ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) = ( 𝑥 +s ( 𝑦𝐿 +s 𝑧 ) ) ) |
61 |
58 60
|
eqeq12d |
⊢ ( 𝑦𝑂 = 𝑦𝐿 → ( ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ↔ ( ( 𝑥 +s 𝑦𝐿 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝐿 +s 𝑧 ) ) ) ) |
62 |
|
simplr2 |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ) → ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ) |
63 |
|
elun1 |
⊢ ( 𝑦𝐿 ∈ ( L ‘ 𝑦 ) → 𝑦𝐿 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ) |
64 |
63
|
adantl |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ) → 𝑦𝐿 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ) |
65 |
61 62 64
|
rspcdva |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ) → ( ( 𝑥 +s 𝑦𝐿 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝐿 +s 𝑧 ) ) ) |
66 |
65
|
eqeq2d |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ) → ( 𝑏 = ( ( 𝑥 +s 𝑦𝐿 ) +s 𝑧 ) ↔ 𝑏 = ( 𝑥 +s ( 𝑦𝐿 +s 𝑧 ) ) ) ) |
67 |
66
|
rexbidva |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑏 = ( ( 𝑥 +s 𝑦𝐿 ) +s 𝑧 ) ↔ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑏 = ( 𝑥 +s ( 𝑦𝐿 +s 𝑧 ) ) ) ) |
68 |
67
|
abbidv |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → { 𝑏 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑏 = ( ( 𝑥 +s 𝑦𝐿 ) +s 𝑧 ) } = { 𝑏 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑏 = ( 𝑥 +s ( 𝑦𝐿 +s 𝑧 ) ) } ) |
69 |
56 68
|
uneq12d |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( ( 𝑥𝐿 +s 𝑦 ) +s 𝑧 ) } ∪ { 𝑏 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑏 = ( ( 𝑥 +s 𝑦𝐿 ) +s 𝑧 ) } ) = ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( 𝑦 +s 𝑧 ) ) } ∪ { 𝑏 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑏 = ( 𝑥 +s ( 𝑦𝐿 +s 𝑧 ) ) } ) ) |
70 |
|
oveq2 |
⊢ ( 𝑧𝑂 = 𝑧𝐿 → ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( ( 𝑥 +s 𝑦 ) +s 𝑧𝐿 ) ) |
71 |
|
oveq2 |
⊢ ( 𝑧𝑂 = 𝑧𝐿 → ( 𝑦 +s 𝑧𝑂 ) = ( 𝑦 +s 𝑧𝐿 ) ) |
72 |
71
|
oveq2d |
⊢ ( 𝑧𝑂 = 𝑧𝐿 → ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝐿 ) ) ) |
73 |
70 72
|
eqeq12d |
⊢ ( 𝑧𝑂 = 𝑧𝐿 → ( ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ↔ ( ( 𝑥 +s 𝑦 ) +s 𝑧𝐿 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝐿 ) ) ) ) |
74 |
|
simplr3 |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ) → ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) |
75 |
|
elun1 |
⊢ ( 𝑧𝐿 ∈ ( L ‘ 𝑧 ) → 𝑧𝐿 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ) |
76 |
75
|
adantl |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ) → 𝑧𝐿 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ) |
77 |
73 74 76
|
rspcdva |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ) → ( ( 𝑥 +s 𝑦 ) +s 𝑧𝐿 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝐿 ) ) ) |
78 |
77
|
eqeq2d |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) ) → ( 𝑐 = ( ( 𝑥 +s 𝑦 ) +s 𝑧𝐿 ) ↔ 𝑐 = ( 𝑥 +s ( 𝑦 +s 𝑧𝐿 ) ) ) ) |
79 |
78
|
rexbidva |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑐 = ( ( 𝑥 +s 𝑦 ) +s 𝑧𝐿 ) ↔ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑐 = ( 𝑥 +s ( 𝑦 +s 𝑧𝐿 ) ) ) ) |
80 |
79
|
abbidv |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → { 𝑐 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑐 = ( ( 𝑥 +s 𝑦 ) +s 𝑧𝐿 ) } = { 𝑐 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑐 = ( 𝑥 +s ( 𝑦 +s 𝑧𝐿 ) ) } ) |
81 |
69 80
|
uneq12d |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( ( 𝑥𝐿 +s 𝑦 ) +s 𝑧 ) } ∪ { 𝑏 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑏 = ( ( 𝑥 +s 𝑦𝐿 ) +s 𝑧 ) } ) ∪ { 𝑐 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑐 = ( ( 𝑥 +s 𝑦 ) +s 𝑧𝐿 ) } ) = ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( 𝑦 +s 𝑧 ) ) } ∪ { 𝑏 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑏 = ( 𝑥 +s ( 𝑦𝐿 +s 𝑧 ) ) } ) ∪ { 𝑐 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑐 = ( 𝑥 +s ( 𝑦 +s 𝑧𝐿 ) ) } ) ) |
82 |
|
oveq1 |
⊢ ( 𝑥𝑂 = 𝑥𝑅 → ( 𝑥𝑂 +s 𝑦 ) = ( 𝑥𝑅 +s 𝑦 ) ) |
83 |
82
|
oveq1d |
⊢ ( 𝑥𝑂 = 𝑥𝑅 → ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( ( 𝑥𝑅 +s 𝑦 ) +s 𝑧 ) ) |
84 |
|
oveq1 |
⊢ ( 𝑥𝑂 = 𝑥𝑅 → ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) = ( 𝑥𝑅 +s ( 𝑦 +s 𝑧 ) ) ) |
85 |
83 84
|
eqeq12d |
⊢ ( 𝑥𝑂 = 𝑥𝑅 → ( ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ↔ ( ( 𝑥𝑅 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑅 +s ( 𝑦 +s 𝑧 ) ) ) ) |
86 |
|
simplr1 |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ) |
87 |
|
elun2 |
⊢ ( 𝑥𝑅 ∈ ( R ‘ 𝑥 ) → 𝑥𝑅 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ) |
88 |
87
|
adantl |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → 𝑥𝑅 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ) |
89 |
85 86 88
|
rspcdva |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( ( 𝑥𝑅 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑅 +s ( 𝑦 +s 𝑧 ) ) ) |
90 |
89
|
eqeq2d |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( 𝑑 = ( ( 𝑥𝑅 +s 𝑦 ) +s 𝑧 ) ↔ 𝑑 = ( 𝑥𝑅 +s ( 𝑦 +s 𝑧 ) ) ) ) |
91 |
90
|
rexbidva |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑑 = ( ( 𝑥𝑅 +s 𝑦 ) +s 𝑧 ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑑 = ( 𝑥𝑅 +s ( 𝑦 +s 𝑧 ) ) ) ) |
92 |
91
|
abbidv |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → { 𝑑 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑑 = ( ( 𝑥𝑅 +s 𝑦 ) +s 𝑧 ) } = { 𝑑 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑑 = ( 𝑥𝑅 +s ( 𝑦 +s 𝑧 ) ) } ) |
93 |
|
oveq2 |
⊢ ( 𝑦𝑂 = 𝑦𝑅 → ( 𝑥 +s 𝑦𝑂 ) = ( 𝑥 +s 𝑦𝑅 ) ) |
94 |
93
|
oveq1d |
⊢ ( 𝑦𝑂 = 𝑦𝑅 → ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( ( 𝑥 +s 𝑦𝑅 ) +s 𝑧 ) ) |
95 |
|
oveq1 |
⊢ ( 𝑦𝑂 = 𝑦𝑅 → ( 𝑦𝑂 +s 𝑧 ) = ( 𝑦𝑅 +s 𝑧 ) ) |
96 |
95
|
oveq2d |
⊢ ( 𝑦𝑂 = 𝑦𝑅 → ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) = ( 𝑥 +s ( 𝑦𝑅 +s 𝑧 ) ) ) |
97 |
94 96
|
eqeq12d |
⊢ ( 𝑦𝑂 = 𝑦𝑅 → ( ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ↔ ( ( 𝑥 +s 𝑦𝑅 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑅 +s 𝑧 ) ) ) ) |
98 |
|
simplr2 |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ) → ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ) |
99 |
|
elun2 |
⊢ ( 𝑦𝑅 ∈ ( R ‘ 𝑦 ) → 𝑦𝑅 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ) |
100 |
99
|
adantl |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ) → 𝑦𝑅 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ) |
101 |
97 98 100
|
rspcdva |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ) → ( ( 𝑥 +s 𝑦𝑅 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑅 +s 𝑧 ) ) ) |
102 |
101
|
eqeq2d |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ) → ( 𝑒 = ( ( 𝑥 +s 𝑦𝑅 ) +s 𝑧 ) ↔ 𝑒 = ( 𝑥 +s ( 𝑦𝑅 +s 𝑧 ) ) ) ) |
103 |
102
|
rexbidva |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑒 = ( ( 𝑥 +s 𝑦𝑅 ) +s 𝑧 ) ↔ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑒 = ( 𝑥 +s ( 𝑦𝑅 +s 𝑧 ) ) ) ) |
104 |
103
|
abbidv |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → { 𝑒 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑒 = ( ( 𝑥 +s 𝑦𝑅 ) +s 𝑧 ) } = { 𝑒 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑒 = ( 𝑥 +s ( 𝑦𝑅 +s 𝑧 ) ) } ) |
105 |
92 104
|
uneq12d |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → ( { 𝑑 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑑 = ( ( 𝑥𝑅 +s 𝑦 ) +s 𝑧 ) } ∪ { 𝑒 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑒 = ( ( 𝑥 +s 𝑦𝑅 ) +s 𝑧 ) } ) = ( { 𝑑 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑑 = ( 𝑥𝑅 +s ( 𝑦 +s 𝑧 ) ) } ∪ { 𝑒 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑒 = ( 𝑥 +s ( 𝑦𝑅 +s 𝑧 ) ) } ) ) |
106 |
|
oveq2 |
⊢ ( 𝑧𝑂 = 𝑧𝑅 → ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑅 ) ) |
107 |
|
oveq2 |
⊢ ( 𝑧𝑂 = 𝑧𝑅 → ( 𝑦 +s 𝑧𝑂 ) = ( 𝑦 +s 𝑧𝑅 ) ) |
108 |
107
|
oveq2d |
⊢ ( 𝑧𝑂 = 𝑧𝑅 → ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑅 ) ) ) |
109 |
106 108
|
eqeq12d |
⊢ ( 𝑧𝑂 = 𝑧𝑅 → ( ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ↔ ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑅 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑅 ) ) ) ) |
110 |
|
simplr3 |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ) → ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) |
111 |
|
elun2 |
⊢ ( 𝑧𝑅 ∈ ( R ‘ 𝑧 ) → 𝑧𝑅 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ) |
112 |
111
|
adantl |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ) → 𝑧𝑅 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ) |
113 |
109 110 112
|
rspcdva |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ) → ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑅 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑅 ) ) ) |
114 |
113
|
eqeq2d |
⊢ ( ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) ∧ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) ) → ( 𝑓 = ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑅 ) ↔ 𝑓 = ( 𝑥 +s ( 𝑦 +s 𝑧𝑅 ) ) ) ) |
115 |
114
|
rexbidva |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑓 = ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑅 ) ↔ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑓 = ( 𝑥 +s ( 𝑦 +s 𝑧𝑅 ) ) ) ) |
116 |
115
|
abbidv |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → { 𝑓 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑓 = ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑅 ) } = { 𝑓 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑓 = ( 𝑥 +s ( 𝑦 +s 𝑧𝑅 ) ) } ) |
117 |
105 116
|
uneq12d |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → ( ( { 𝑑 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑑 = ( ( 𝑥𝑅 +s 𝑦 ) +s 𝑧 ) } ∪ { 𝑒 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑒 = ( ( 𝑥 +s 𝑦𝑅 ) +s 𝑧 ) } ) ∪ { 𝑓 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑓 = ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑅 ) } ) = ( ( { 𝑑 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑑 = ( 𝑥𝑅 +s ( 𝑦 +s 𝑧 ) ) } ∪ { 𝑒 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑒 = ( 𝑥 +s ( 𝑦𝑅 +s 𝑧 ) ) } ) ∪ { 𝑓 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑓 = ( 𝑥 +s ( 𝑦 +s 𝑧𝑅 ) ) } ) ) |
118 |
81 117
|
oveq12d |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → ( ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( ( 𝑥𝐿 +s 𝑦 ) +s 𝑧 ) } ∪ { 𝑏 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑏 = ( ( 𝑥 +s 𝑦𝐿 ) +s 𝑧 ) } ) ∪ { 𝑐 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑐 = ( ( 𝑥 +s 𝑦 ) +s 𝑧𝐿 ) } ) |s ( ( { 𝑑 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑑 = ( ( 𝑥𝑅 +s 𝑦 ) +s 𝑧 ) } ∪ { 𝑒 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑒 = ( ( 𝑥 +s 𝑦𝑅 ) +s 𝑧 ) } ) ∪ { 𝑓 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑓 = ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑅 ) } ) ) = ( ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( 𝑦 +s 𝑧 ) ) } ∪ { 𝑏 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑏 = ( 𝑥 +s ( 𝑦𝐿 +s 𝑧 ) ) } ) ∪ { 𝑐 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑐 = ( 𝑥 +s ( 𝑦 +s 𝑧𝐿 ) ) } ) |s ( ( { 𝑑 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑑 = ( 𝑥𝑅 +s ( 𝑦 +s 𝑧 ) ) } ∪ { 𝑒 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑒 = ( 𝑥 +s ( 𝑦𝑅 +s 𝑧 ) ) } ) ∪ { 𝑓 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑓 = ( 𝑥 +s ( 𝑦 +s 𝑧𝑅 ) ) } ) ) ) |
119 |
|
simpl1 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → 𝑥 ∈ No ) |
120 |
|
simpl2 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → 𝑦 ∈ No ) |
121 |
|
simpl3 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → 𝑧 ∈ No ) |
122 |
119 120 121
|
addsasslem1 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → ( ( 𝑥 +s 𝑦 ) +s 𝑧 ) = ( ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( ( 𝑥𝐿 +s 𝑦 ) +s 𝑧 ) } ∪ { 𝑏 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑏 = ( ( 𝑥 +s 𝑦𝐿 ) +s 𝑧 ) } ) ∪ { 𝑐 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑐 = ( ( 𝑥 +s 𝑦 ) +s 𝑧𝐿 ) } ) |s ( ( { 𝑑 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑑 = ( ( 𝑥𝑅 +s 𝑦 ) +s 𝑧 ) } ∪ { 𝑒 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑒 = ( ( 𝑥 +s 𝑦𝑅 ) +s 𝑧 ) } ) ∪ { 𝑓 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑓 = ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑅 ) } ) ) ) |
123 |
119 120 121
|
addsasslem2 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → ( 𝑥 +s ( 𝑦 +s 𝑧 ) ) = ( ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( 𝑦 +s 𝑧 ) ) } ∪ { 𝑏 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) 𝑏 = ( 𝑥 +s ( 𝑦𝐿 +s 𝑧 ) ) } ) ∪ { 𝑐 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑐 = ( 𝑥 +s ( 𝑦 +s 𝑧𝐿 ) ) } ) |s ( ( { 𝑑 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑑 = ( 𝑥𝑅 +s ( 𝑦 +s 𝑧 ) ) } ∪ { 𝑒 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) 𝑒 = ( 𝑥 +s ( 𝑦𝑅 +s 𝑧 ) ) } ) ∪ { 𝑓 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑓 = ( 𝑥 +s ( 𝑦 +s 𝑧𝑅 ) ) } ) ) ) |
124 |
118 122 123
|
3eqtr4d |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ) → ( ( 𝑥 +s 𝑦 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦 +s 𝑧 ) ) ) |
125 |
124
|
ex |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) → ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) → ( ( 𝑥 +s 𝑦 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦 +s 𝑧 ) ) ) ) |
126 |
45 125
|
syl5 |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) → ( ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 +s 𝑦𝑂 ) +s 𝑧𝑂 ) = ( 𝑥𝑂 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦𝑂 +s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 +s 𝑦 ) +s 𝑧 ) = ( 𝑥𝑂 +s ( 𝑦 +s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 +s 𝑦𝑂 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦𝑂 +s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 +s 𝑦 ) +s 𝑧𝑂 ) = ( 𝑥 +s ( 𝑦 +s 𝑧𝑂 ) ) ) → ( ( 𝑥 +s 𝑦 ) +s 𝑧 ) = ( 𝑥 +s ( 𝑦 +s 𝑧 ) ) ) ) |
127 |
4 9 13 17 22 25 28 32 37 41 126
|
no3inds |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ( 𝐴 +s 𝐵 ) +s 𝐶 ) = ( 𝐴 +s ( 𝐵 +s 𝐶 ) ) ) |