Step |
Hyp |
Ref |
Expression |
1 |
|
addsasslem.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
addsasslem.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
|
addsasslem.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
4 |
|
lltropt |
⊢ ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 ) |
5 |
4
|
a1i |
⊢ ( 𝜑 → ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 ) ) |
6 |
2 3
|
addscut |
⊢ ( 𝜑 → ( ( 𝐵 +s 𝐶 ) ∈ No ∧ ( { 𝑑 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑑 = ( 𝑚 +s 𝐶 ) } ∪ { 𝑒 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑒 = ( 𝐵 +s 𝑛 ) } ) <<s { ( 𝐵 +s 𝐶 ) } ∧ { ( 𝐵 +s 𝐶 ) } <<s ( { 𝑓 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑓 = ( 𝑞 +s 𝐶 ) } ∪ { 𝑔 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑔 = ( 𝐵 +s 𝑟 ) } ) ) ) |
7 |
6
|
simp2d |
⊢ ( 𝜑 → ( { 𝑑 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑑 = ( 𝑚 +s 𝐶 ) } ∪ { 𝑒 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑒 = ( 𝐵 +s 𝑛 ) } ) <<s { ( 𝐵 +s 𝐶 ) } ) |
8 |
6
|
simp3d |
⊢ ( 𝜑 → { ( 𝐵 +s 𝐶 ) } <<s ( { 𝑓 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑓 = ( 𝑞 +s 𝐶 ) } ∪ { 𝑔 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑔 = ( 𝐵 +s 𝑟 ) } ) ) |
9 |
|
ovex |
⊢ ( 𝐵 +s 𝐶 ) ∈ V |
10 |
9
|
snnz |
⊢ { ( 𝐵 +s 𝐶 ) } ≠ ∅ |
11 |
|
sslttr |
⊢ ( ( ( { 𝑑 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑑 = ( 𝑚 +s 𝐶 ) } ∪ { 𝑒 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑒 = ( 𝐵 +s 𝑛 ) } ) <<s { ( 𝐵 +s 𝐶 ) } ∧ { ( 𝐵 +s 𝐶 ) } <<s ( { 𝑓 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑓 = ( 𝑞 +s 𝐶 ) } ∪ { 𝑔 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑔 = ( 𝐵 +s 𝑟 ) } ) ∧ { ( 𝐵 +s 𝐶 ) } ≠ ∅ ) → ( { 𝑑 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑑 = ( 𝑚 +s 𝐶 ) } ∪ { 𝑒 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑒 = ( 𝐵 +s 𝑛 ) } ) <<s ( { 𝑓 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑓 = ( 𝑞 +s 𝐶 ) } ∪ { 𝑔 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑔 = ( 𝐵 +s 𝑟 ) } ) ) |
12 |
10 11
|
mp3an3 |
⊢ ( ( ( { 𝑑 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑑 = ( 𝑚 +s 𝐶 ) } ∪ { 𝑒 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑒 = ( 𝐵 +s 𝑛 ) } ) <<s { ( 𝐵 +s 𝐶 ) } ∧ { ( 𝐵 +s 𝐶 ) } <<s ( { 𝑓 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑓 = ( 𝑞 +s 𝐶 ) } ∪ { 𝑔 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑔 = ( 𝐵 +s 𝑟 ) } ) ) → ( { 𝑑 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑑 = ( 𝑚 +s 𝐶 ) } ∪ { 𝑒 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑒 = ( 𝐵 +s 𝑛 ) } ) <<s ( { 𝑓 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑓 = ( 𝑞 +s 𝐶 ) } ∪ { 𝑔 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑔 = ( 𝐵 +s 𝑟 ) } ) ) |
13 |
7 8 12
|
syl2anc |
⊢ ( 𝜑 → ( { 𝑑 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑑 = ( 𝑚 +s 𝐶 ) } ∪ { 𝑒 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑒 = ( 𝐵 +s 𝑛 ) } ) <<s ( { 𝑓 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑓 = ( 𝑞 +s 𝐶 ) } ∪ { 𝑔 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑔 = ( 𝐵 +s 𝑟 ) } ) ) |
14 |
|
lrcut |
⊢ ( 𝐴 ∈ No → ( ( L ‘ 𝐴 ) |s ( R ‘ 𝐴 ) ) = 𝐴 ) |
15 |
1 14
|
syl |
⊢ ( 𝜑 → ( ( L ‘ 𝐴 ) |s ( R ‘ 𝐴 ) ) = 𝐴 ) |
16 |
15
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = ( ( L ‘ 𝐴 ) |s ( R ‘ 𝐴 ) ) ) |
17 |
|
addsval2 |
⊢ ( ( 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐵 +s 𝐶 ) = ( ( { 𝑑 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑑 = ( 𝑚 +s 𝐶 ) } ∪ { 𝑒 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑒 = ( 𝐵 +s 𝑛 ) } ) |s ( { 𝑓 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑓 = ( 𝑞 +s 𝐶 ) } ∪ { 𝑔 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑔 = ( 𝐵 +s 𝑟 ) } ) ) ) |
18 |
2 3 17
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 +s 𝐶 ) = ( ( { 𝑑 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑑 = ( 𝑚 +s 𝐶 ) } ∪ { 𝑒 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑒 = ( 𝐵 +s 𝑛 ) } ) |s ( { 𝑓 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑓 = ( 𝑞 +s 𝐶 ) } ∪ { 𝑔 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑔 = ( 𝐵 +s 𝑟 ) } ) ) ) |
19 |
5 13 16 18
|
addsunif |
⊢ ( 𝜑 → ( 𝐴 +s ( 𝐵 +s 𝐶 ) ) = ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( 𝑙 +s ( 𝐵 +s 𝐶 ) ) } ∪ { 𝑧 ∣ ∃ ℎ ∈ ( { 𝑑 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑑 = ( 𝑚 +s 𝐶 ) } ∪ { 𝑒 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑒 = ( 𝐵 +s 𝑛 ) } ) 𝑧 = ( 𝐴 +s ℎ ) } ) |s ( { 𝑎 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑎 = ( 𝑝 +s ( 𝐵 +s 𝐶 ) ) } ∪ { 𝑏 ∣ ∃ 𝑖 ∈ ( { 𝑓 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑓 = ( 𝑞 +s 𝐶 ) } ∪ { 𝑔 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑔 = ( 𝐵 +s 𝑟 ) } ) 𝑏 = ( 𝐴 +s 𝑖 ) } ) ) ) |
20 |
|
rexun |
⊢ ( ∃ ℎ ∈ ( { 𝑑 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑑 = ( 𝑚 +s 𝐶 ) } ∪ { 𝑒 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑒 = ( 𝐵 +s 𝑛 ) } ) 𝑧 = ( 𝐴 +s ℎ ) ↔ ( ∃ ℎ ∈ { 𝑑 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑑 = ( 𝑚 +s 𝐶 ) } 𝑧 = ( 𝐴 +s ℎ ) ∨ ∃ ℎ ∈ { 𝑒 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑒 = ( 𝐵 +s 𝑛 ) } 𝑧 = ( 𝐴 +s ℎ ) ) ) |
21 |
|
eqeq1 |
⊢ ( 𝑑 = ℎ → ( 𝑑 = ( 𝑚 +s 𝐶 ) ↔ ℎ = ( 𝑚 +s 𝐶 ) ) ) |
22 |
21
|
rexbidv |
⊢ ( 𝑑 = ℎ → ( ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑑 = ( 𝑚 +s 𝐶 ) ↔ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) ℎ = ( 𝑚 +s 𝐶 ) ) ) |
23 |
22
|
rexab |
⊢ ( ∃ ℎ ∈ { 𝑑 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑑 = ( 𝑚 +s 𝐶 ) } 𝑧 = ( 𝐴 +s ℎ ) ↔ ∃ ℎ ( ∃ 𝑚 ∈ ( L ‘ 𝐵 ) ℎ = ( 𝑚 +s 𝐶 ) ∧ 𝑧 = ( 𝐴 +s ℎ ) ) ) |
24 |
|
rexcom4 |
⊢ ( ∃ 𝑚 ∈ ( L ‘ 𝐵 ) ∃ ℎ ( ℎ = ( 𝑚 +s 𝐶 ) ∧ 𝑧 = ( 𝐴 +s ℎ ) ) ↔ ∃ ℎ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) ( ℎ = ( 𝑚 +s 𝐶 ) ∧ 𝑧 = ( 𝐴 +s ℎ ) ) ) |
25 |
|
ovex |
⊢ ( 𝑚 +s 𝐶 ) ∈ V |
26 |
|
oveq2 |
⊢ ( ℎ = ( 𝑚 +s 𝐶 ) → ( 𝐴 +s ℎ ) = ( 𝐴 +s ( 𝑚 +s 𝐶 ) ) ) |
27 |
26
|
eqeq2d |
⊢ ( ℎ = ( 𝑚 +s 𝐶 ) → ( 𝑧 = ( 𝐴 +s ℎ ) ↔ 𝑧 = ( 𝐴 +s ( 𝑚 +s 𝐶 ) ) ) ) |
28 |
25 27
|
ceqsexv |
⊢ ( ∃ ℎ ( ℎ = ( 𝑚 +s 𝐶 ) ∧ 𝑧 = ( 𝐴 +s ℎ ) ) ↔ 𝑧 = ( 𝐴 +s ( 𝑚 +s 𝐶 ) ) ) |
29 |
28
|
rexbii |
⊢ ( ∃ 𝑚 ∈ ( L ‘ 𝐵 ) ∃ ℎ ( ℎ = ( 𝑚 +s 𝐶 ) ∧ 𝑧 = ( 𝐴 +s ℎ ) ) ↔ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑧 = ( 𝐴 +s ( 𝑚 +s 𝐶 ) ) ) |
30 |
|
r19.41v |
⊢ ( ∃ 𝑚 ∈ ( L ‘ 𝐵 ) ( ℎ = ( 𝑚 +s 𝐶 ) ∧ 𝑧 = ( 𝐴 +s ℎ ) ) ↔ ( ∃ 𝑚 ∈ ( L ‘ 𝐵 ) ℎ = ( 𝑚 +s 𝐶 ) ∧ 𝑧 = ( 𝐴 +s ℎ ) ) ) |
31 |
30
|
exbii |
⊢ ( ∃ ℎ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) ( ℎ = ( 𝑚 +s 𝐶 ) ∧ 𝑧 = ( 𝐴 +s ℎ ) ) ↔ ∃ ℎ ( ∃ 𝑚 ∈ ( L ‘ 𝐵 ) ℎ = ( 𝑚 +s 𝐶 ) ∧ 𝑧 = ( 𝐴 +s ℎ ) ) ) |
32 |
24 29 31
|
3bitr3ri |
⊢ ( ∃ ℎ ( ∃ 𝑚 ∈ ( L ‘ 𝐵 ) ℎ = ( 𝑚 +s 𝐶 ) ∧ 𝑧 = ( 𝐴 +s ℎ ) ) ↔ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑧 = ( 𝐴 +s ( 𝑚 +s 𝐶 ) ) ) |
33 |
23 32
|
bitri |
⊢ ( ∃ ℎ ∈ { 𝑑 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑑 = ( 𝑚 +s 𝐶 ) } 𝑧 = ( 𝐴 +s ℎ ) ↔ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑧 = ( 𝐴 +s ( 𝑚 +s 𝐶 ) ) ) |
34 |
|
eqeq1 |
⊢ ( 𝑒 = ℎ → ( 𝑒 = ( 𝐵 +s 𝑛 ) ↔ ℎ = ( 𝐵 +s 𝑛 ) ) ) |
35 |
34
|
rexbidv |
⊢ ( 𝑒 = ℎ → ( ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑒 = ( 𝐵 +s 𝑛 ) ↔ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) ℎ = ( 𝐵 +s 𝑛 ) ) ) |
36 |
35
|
rexab |
⊢ ( ∃ ℎ ∈ { 𝑒 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑒 = ( 𝐵 +s 𝑛 ) } 𝑧 = ( 𝐴 +s ℎ ) ↔ ∃ ℎ ( ∃ 𝑛 ∈ ( L ‘ 𝐶 ) ℎ = ( 𝐵 +s 𝑛 ) ∧ 𝑧 = ( 𝐴 +s ℎ ) ) ) |
37 |
|
rexcom4 |
⊢ ( ∃ 𝑛 ∈ ( L ‘ 𝐶 ) ∃ ℎ ( ℎ = ( 𝐵 +s 𝑛 ) ∧ 𝑧 = ( 𝐴 +s ℎ ) ) ↔ ∃ ℎ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) ( ℎ = ( 𝐵 +s 𝑛 ) ∧ 𝑧 = ( 𝐴 +s ℎ ) ) ) |
38 |
|
ovex |
⊢ ( 𝐵 +s 𝑛 ) ∈ V |
39 |
|
oveq2 |
⊢ ( ℎ = ( 𝐵 +s 𝑛 ) → ( 𝐴 +s ℎ ) = ( 𝐴 +s ( 𝐵 +s 𝑛 ) ) ) |
40 |
39
|
eqeq2d |
⊢ ( ℎ = ( 𝐵 +s 𝑛 ) → ( 𝑧 = ( 𝐴 +s ℎ ) ↔ 𝑧 = ( 𝐴 +s ( 𝐵 +s 𝑛 ) ) ) ) |
41 |
38 40
|
ceqsexv |
⊢ ( ∃ ℎ ( ℎ = ( 𝐵 +s 𝑛 ) ∧ 𝑧 = ( 𝐴 +s ℎ ) ) ↔ 𝑧 = ( 𝐴 +s ( 𝐵 +s 𝑛 ) ) ) |
42 |
41
|
rexbii |
⊢ ( ∃ 𝑛 ∈ ( L ‘ 𝐶 ) ∃ ℎ ( ℎ = ( 𝐵 +s 𝑛 ) ∧ 𝑧 = ( 𝐴 +s ℎ ) ) ↔ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑧 = ( 𝐴 +s ( 𝐵 +s 𝑛 ) ) ) |
43 |
|
r19.41v |
⊢ ( ∃ 𝑛 ∈ ( L ‘ 𝐶 ) ( ℎ = ( 𝐵 +s 𝑛 ) ∧ 𝑧 = ( 𝐴 +s ℎ ) ) ↔ ( ∃ 𝑛 ∈ ( L ‘ 𝐶 ) ℎ = ( 𝐵 +s 𝑛 ) ∧ 𝑧 = ( 𝐴 +s ℎ ) ) ) |
44 |
43
|
exbii |
⊢ ( ∃ ℎ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) ( ℎ = ( 𝐵 +s 𝑛 ) ∧ 𝑧 = ( 𝐴 +s ℎ ) ) ↔ ∃ ℎ ( ∃ 𝑛 ∈ ( L ‘ 𝐶 ) ℎ = ( 𝐵 +s 𝑛 ) ∧ 𝑧 = ( 𝐴 +s ℎ ) ) ) |
45 |
37 42 44
|
3bitr3ri |
⊢ ( ∃ ℎ ( ∃ 𝑛 ∈ ( L ‘ 𝐶 ) ℎ = ( 𝐵 +s 𝑛 ) ∧ 𝑧 = ( 𝐴 +s ℎ ) ) ↔ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑧 = ( 𝐴 +s ( 𝐵 +s 𝑛 ) ) ) |
46 |
36 45
|
bitri |
⊢ ( ∃ ℎ ∈ { 𝑒 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑒 = ( 𝐵 +s 𝑛 ) } 𝑧 = ( 𝐴 +s ℎ ) ↔ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑧 = ( 𝐴 +s ( 𝐵 +s 𝑛 ) ) ) |
47 |
33 46
|
orbi12i |
⊢ ( ( ∃ ℎ ∈ { 𝑑 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑑 = ( 𝑚 +s 𝐶 ) } 𝑧 = ( 𝐴 +s ℎ ) ∨ ∃ ℎ ∈ { 𝑒 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑒 = ( 𝐵 +s 𝑛 ) } 𝑧 = ( 𝐴 +s ℎ ) ) ↔ ( ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑧 = ( 𝐴 +s ( 𝑚 +s 𝐶 ) ) ∨ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑧 = ( 𝐴 +s ( 𝐵 +s 𝑛 ) ) ) ) |
48 |
20 47
|
bitri |
⊢ ( ∃ ℎ ∈ ( { 𝑑 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑑 = ( 𝑚 +s 𝐶 ) } ∪ { 𝑒 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑒 = ( 𝐵 +s 𝑛 ) } ) 𝑧 = ( 𝐴 +s ℎ ) ↔ ( ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑧 = ( 𝐴 +s ( 𝑚 +s 𝐶 ) ) ∨ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑧 = ( 𝐴 +s ( 𝐵 +s 𝑛 ) ) ) ) |
49 |
48
|
abbii |
⊢ { 𝑧 ∣ ∃ ℎ ∈ ( { 𝑑 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑑 = ( 𝑚 +s 𝐶 ) } ∪ { 𝑒 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑒 = ( 𝐵 +s 𝑛 ) } ) 𝑧 = ( 𝐴 +s ℎ ) } = { 𝑧 ∣ ( ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑧 = ( 𝐴 +s ( 𝑚 +s 𝐶 ) ) ∨ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑧 = ( 𝐴 +s ( 𝐵 +s 𝑛 ) ) ) } |
50 |
|
unab |
⊢ ( { 𝑧 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑧 = ( 𝐴 +s ( 𝑚 +s 𝐶 ) ) } ∪ { 𝑧 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑧 = ( 𝐴 +s ( 𝐵 +s 𝑛 ) ) } ) = { 𝑧 ∣ ( ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑧 = ( 𝐴 +s ( 𝑚 +s 𝐶 ) ) ∨ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑧 = ( 𝐴 +s ( 𝐵 +s 𝑛 ) ) ) } |
51 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 = ( 𝐴 +s ( 𝐵 +s 𝑛 ) ) ↔ 𝑤 = ( 𝐴 +s ( 𝐵 +s 𝑛 ) ) ) ) |
52 |
51
|
rexbidv |
⊢ ( 𝑧 = 𝑤 → ( ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑧 = ( 𝐴 +s ( 𝐵 +s 𝑛 ) ) ↔ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑤 = ( 𝐴 +s ( 𝐵 +s 𝑛 ) ) ) ) |
53 |
52
|
cbvabv |
⊢ { 𝑧 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑧 = ( 𝐴 +s ( 𝐵 +s 𝑛 ) ) } = { 𝑤 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑤 = ( 𝐴 +s ( 𝐵 +s 𝑛 ) ) } |
54 |
53
|
uneq2i |
⊢ ( { 𝑧 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑧 = ( 𝐴 +s ( 𝑚 +s 𝐶 ) ) } ∪ { 𝑧 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑧 = ( 𝐴 +s ( 𝐵 +s 𝑛 ) ) } ) = ( { 𝑧 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑧 = ( 𝐴 +s ( 𝑚 +s 𝐶 ) ) } ∪ { 𝑤 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑤 = ( 𝐴 +s ( 𝐵 +s 𝑛 ) ) } ) |
55 |
49 50 54
|
3eqtr2i |
⊢ { 𝑧 ∣ ∃ ℎ ∈ ( { 𝑑 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑑 = ( 𝑚 +s 𝐶 ) } ∪ { 𝑒 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑒 = ( 𝐵 +s 𝑛 ) } ) 𝑧 = ( 𝐴 +s ℎ ) } = ( { 𝑧 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑧 = ( 𝐴 +s ( 𝑚 +s 𝐶 ) ) } ∪ { 𝑤 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑤 = ( 𝐴 +s ( 𝐵 +s 𝑛 ) ) } ) |
56 |
55
|
uneq2i |
⊢ ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( 𝑙 +s ( 𝐵 +s 𝐶 ) ) } ∪ { 𝑧 ∣ ∃ ℎ ∈ ( { 𝑑 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑑 = ( 𝑚 +s 𝐶 ) } ∪ { 𝑒 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑒 = ( 𝐵 +s 𝑛 ) } ) 𝑧 = ( 𝐴 +s ℎ ) } ) = ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( 𝑙 +s ( 𝐵 +s 𝐶 ) ) } ∪ ( { 𝑧 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑧 = ( 𝐴 +s ( 𝑚 +s 𝐶 ) ) } ∪ { 𝑤 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑤 = ( 𝐴 +s ( 𝐵 +s 𝑛 ) ) } ) ) |
57 |
|
unass |
⊢ ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( 𝑙 +s ( 𝐵 +s 𝐶 ) ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑧 = ( 𝐴 +s ( 𝑚 +s 𝐶 ) ) } ) ∪ { 𝑤 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑤 = ( 𝐴 +s ( 𝐵 +s 𝑛 ) ) } ) = ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( 𝑙 +s ( 𝐵 +s 𝐶 ) ) } ∪ ( { 𝑧 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑧 = ( 𝐴 +s ( 𝑚 +s 𝐶 ) ) } ∪ { 𝑤 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑤 = ( 𝐴 +s ( 𝐵 +s 𝑛 ) ) } ) ) |
58 |
56 57
|
eqtr4i |
⊢ ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( 𝑙 +s ( 𝐵 +s 𝐶 ) ) } ∪ { 𝑧 ∣ ∃ ℎ ∈ ( { 𝑑 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑑 = ( 𝑚 +s 𝐶 ) } ∪ { 𝑒 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑒 = ( 𝐵 +s 𝑛 ) } ) 𝑧 = ( 𝐴 +s ℎ ) } ) = ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( 𝑙 +s ( 𝐵 +s 𝐶 ) ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑧 = ( 𝐴 +s ( 𝑚 +s 𝐶 ) ) } ) ∪ { 𝑤 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑤 = ( 𝐴 +s ( 𝐵 +s 𝑛 ) ) } ) |
59 |
|
rexun |
⊢ ( ∃ 𝑖 ∈ ( { 𝑓 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑓 = ( 𝑞 +s 𝐶 ) } ∪ { 𝑔 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑔 = ( 𝐵 +s 𝑟 ) } ) 𝑏 = ( 𝐴 +s 𝑖 ) ↔ ( ∃ 𝑖 ∈ { 𝑓 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑓 = ( 𝑞 +s 𝐶 ) } 𝑏 = ( 𝐴 +s 𝑖 ) ∨ ∃ 𝑖 ∈ { 𝑔 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑔 = ( 𝐵 +s 𝑟 ) } 𝑏 = ( 𝐴 +s 𝑖 ) ) ) |
60 |
|
eqeq1 |
⊢ ( 𝑓 = 𝑖 → ( 𝑓 = ( 𝑞 +s 𝐶 ) ↔ 𝑖 = ( 𝑞 +s 𝐶 ) ) ) |
61 |
60
|
rexbidv |
⊢ ( 𝑓 = 𝑖 → ( ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑓 = ( 𝑞 +s 𝐶 ) ↔ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑖 = ( 𝑞 +s 𝐶 ) ) ) |
62 |
61
|
rexab |
⊢ ( ∃ 𝑖 ∈ { 𝑓 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑓 = ( 𝑞 +s 𝐶 ) } 𝑏 = ( 𝐴 +s 𝑖 ) ↔ ∃ 𝑖 ( ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑖 = ( 𝑞 +s 𝐶 ) ∧ 𝑏 = ( 𝐴 +s 𝑖 ) ) ) |
63 |
|
rexcom4 |
⊢ ( ∃ 𝑞 ∈ ( R ‘ 𝐵 ) ∃ 𝑖 ( 𝑖 = ( 𝑞 +s 𝐶 ) ∧ 𝑏 = ( 𝐴 +s 𝑖 ) ) ↔ ∃ 𝑖 ∃ 𝑞 ∈ ( R ‘ 𝐵 ) ( 𝑖 = ( 𝑞 +s 𝐶 ) ∧ 𝑏 = ( 𝐴 +s 𝑖 ) ) ) |
64 |
|
ovex |
⊢ ( 𝑞 +s 𝐶 ) ∈ V |
65 |
|
oveq2 |
⊢ ( 𝑖 = ( 𝑞 +s 𝐶 ) → ( 𝐴 +s 𝑖 ) = ( 𝐴 +s ( 𝑞 +s 𝐶 ) ) ) |
66 |
65
|
eqeq2d |
⊢ ( 𝑖 = ( 𝑞 +s 𝐶 ) → ( 𝑏 = ( 𝐴 +s 𝑖 ) ↔ 𝑏 = ( 𝐴 +s ( 𝑞 +s 𝐶 ) ) ) ) |
67 |
64 66
|
ceqsexv |
⊢ ( ∃ 𝑖 ( 𝑖 = ( 𝑞 +s 𝐶 ) ∧ 𝑏 = ( 𝐴 +s 𝑖 ) ) ↔ 𝑏 = ( 𝐴 +s ( 𝑞 +s 𝐶 ) ) ) |
68 |
67
|
rexbii |
⊢ ( ∃ 𝑞 ∈ ( R ‘ 𝐵 ) ∃ 𝑖 ( 𝑖 = ( 𝑞 +s 𝐶 ) ∧ 𝑏 = ( 𝐴 +s 𝑖 ) ) ↔ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑏 = ( 𝐴 +s ( 𝑞 +s 𝐶 ) ) ) |
69 |
|
r19.41v |
⊢ ( ∃ 𝑞 ∈ ( R ‘ 𝐵 ) ( 𝑖 = ( 𝑞 +s 𝐶 ) ∧ 𝑏 = ( 𝐴 +s 𝑖 ) ) ↔ ( ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑖 = ( 𝑞 +s 𝐶 ) ∧ 𝑏 = ( 𝐴 +s 𝑖 ) ) ) |
70 |
69
|
exbii |
⊢ ( ∃ 𝑖 ∃ 𝑞 ∈ ( R ‘ 𝐵 ) ( 𝑖 = ( 𝑞 +s 𝐶 ) ∧ 𝑏 = ( 𝐴 +s 𝑖 ) ) ↔ ∃ 𝑖 ( ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑖 = ( 𝑞 +s 𝐶 ) ∧ 𝑏 = ( 𝐴 +s 𝑖 ) ) ) |
71 |
63 68 70
|
3bitr3ri |
⊢ ( ∃ 𝑖 ( ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑖 = ( 𝑞 +s 𝐶 ) ∧ 𝑏 = ( 𝐴 +s 𝑖 ) ) ↔ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑏 = ( 𝐴 +s ( 𝑞 +s 𝐶 ) ) ) |
72 |
62 71
|
bitri |
⊢ ( ∃ 𝑖 ∈ { 𝑓 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑓 = ( 𝑞 +s 𝐶 ) } 𝑏 = ( 𝐴 +s 𝑖 ) ↔ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑏 = ( 𝐴 +s ( 𝑞 +s 𝐶 ) ) ) |
73 |
|
eqeq1 |
⊢ ( 𝑔 = 𝑖 → ( 𝑔 = ( 𝐵 +s 𝑟 ) ↔ 𝑖 = ( 𝐵 +s 𝑟 ) ) ) |
74 |
73
|
rexbidv |
⊢ ( 𝑔 = 𝑖 → ( ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑔 = ( 𝐵 +s 𝑟 ) ↔ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑖 = ( 𝐵 +s 𝑟 ) ) ) |
75 |
74
|
rexab |
⊢ ( ∃ 𝑖 ∈ { 𝑔 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑔 = ( 𝐵 +s 𝑟 ) } 𝑏 = ( 𝐴 +s 𝑖 ) ↔ ∃ 𝑖 ( ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑖 = ( 𝐵 +s 𝑟 ) ∧ 𝑏 = ( 𝐴 +s 𝑖 ) ) ) |
76 |
|
rexcom4 |
⊢ ( ∃ 𝑟 ∈ ( R ‘ 𝐶 ) ∃ 𝑖 ( 𝑖 = ( 𝐵 +s 𝑟 ) ∧ 𝑏 = ( 𝐴 +s 𝑖 ) ) ↔ ∃ 𝑖 ∃ 𝑟 ∈ ( R ‘ 𝐶 ) ( 𝑖 = ( 𝐵 +s 𝑟 ) ∧ 𝑏 = ( 𝐴 +s 𝑖 ) ) ) |
77 |
|
ovex |
⊢ ( 𝐵 +s 𝑟 ) ∈ V |
78 |
|
oveq2 |
⊢ ( 𝑖 = ( 𝐵 +s 𝑟 ) → ( 𝐴 +s 𝑖 ) = ( 𝐴 +s ( 𝐵 +s 𝑟 ) ) ) |
79 |
78
|
eqeq2d |
⊢ ( 𝑖 = ( 𝐵 +s 𝑟 ) → ( 𝑏 = ( 𝐴 +s 𝑖 ) ↔ 𝑏 = ( 𝐴 +s ( 𝐵 +s 𝑟 ) ) ) ) |
80 |
77 79
|
ceqsexv |
⊢ ( ∃ 𝑖 ( 𝑖 = ( 𝐵 +s 𝑟 ) ∧ 𝑏 = ( 𝐴 +s 𝑖 ) ) ↔ 𝑏 = ( 𝐴 +s ( 𝐵 +s 𝑟 ) ) ) |
81 |
80
|
rexbii |
⊢ ( ∃ 𝑟 ∈ ( R ‘ 𝐶 ) ∃ 𝑖 ( 𝑖 = ( 𝐵 +s 𝑟 ) ∧ 𝑏 = ( 𝐴 +s 𝑖 ) ) ↔ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑏 = ( 𝐴 +s ( 𝐵 +s 𝑟 ) ) ) |
82 |
|
r19.41v |
⊢ ( ∃ 𝑟 ∈ ( R ‘ 𝐶 ) ( 𝑖 = ( 𝐵 +s 𝑟 ) ∧ 𝑏 = ( 𝐴 +s 𝑖 ) ) ↔ ( ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑖 = ( 𝐵 +s 𝑟 ) ∧ 𝑏 = ( 𝐴 +s 𝑖 ) ) ) |
83 |
82
|
exbii |
⊢ ( ∃ 𝑖 ∃ 𝑟 ∈ ( R ‘ 𝐶 ) ( 𝑖 = ( 𝐵 +s 𝑟 ) ∧ 𝑏 = ( 𝐴 +s 𝑖 ) ) ↔ ∃ 𝑖 ( ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑖 = ( 𝐵 +s 𝑟 ) ∧ 𝑏 = ( 𝐴 +s 𝑖 ) ) ) |
84 |
76 81 83
|
3bitr3ri |
⊢ ( ∃ 𝑖 ( ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑖 = ( 𝐵 +s 𝑟 ) ∧ 𝑏 = ( 𝐴 +s 𝑖 ) ) ↔ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑏 = ( 𝐴 +s ( 𝐵 +s 𝑟 ) ) ) |
85 |
75 84
|
bitri |
⊢ ( ∃ 𝑖 ∈ { 𝑔 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑔 = ( 𝐵 +s 𝑟 ) } 𝑏 = ( 𝐴 +s 𝑖 ) ↔ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑏 = ( 𝐴 +s ( 𝐵 +s 𝑟 ) ) ) |
86 |
72 85
|
orbi12i |
⊢ ( ( ∃ 𝑖 ∈ { 𝑓 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑓 = ( 𝑞 +s 𝐶 ) } 𝑏 = ( 𝐴 +s 𝑖 ) ∨ ∃ 𝑖 ∈ { 𝑔 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑔 = ( 𝐵 +s 𝑟 ) } 𝑏 = ( 𝐴 +s 𝑖 ) ) ↔ ( ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑏 = ( 𝐴 +s ( 𝑞 +s 𝐶 ) ) ∨ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑏 = ( 𝐴 +s ( 𝐵 +s 𝑟 ) ) ) ) |
87 |
59 86
|
bitri |
⊢ ( ∃ 𝑖 ∈ ( { 𝑓 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑓 = ( 𝑞 +s 𝐶 ) } ∪ { 𝑔 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑔 = ( 𝐵 +s 𝑟 ) } ) 𝑏 = ( 𝐴 +s 𝑖 ) ↔ ( ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑏 = ( 𝐴 +s ( 𝑞 +s 𝐶 ) ) ∨ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑏 = ( 𝐴 +s ( 𝐵 +s 𝑟 ) ) ) ) |
88 |
87
|
abbii |
⊢ { 𝑏 ∣ ∃ 𝑖 ∈ ( { 𝑓 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑓 = ( 𝑞 +s 𝐶 ) } ∪ { 𝑔 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑔 = ( 𝐵 +s 𝑟 ) } ) 𝑏 = ( 𝐴 +s 𝑖 ) } = { 𝑏 ∣ ( ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑏 = ( 𝐴 +s ( 𝑞 +s 𝐶 ) ) ∨ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑏 = ( 𝐴 +s ( 𝐵 +s 𝑟 ) ) ) } |
89 |
|
unab |
⊢ ( { 𝑏 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑏 = ( 𝐴 +s ( 𝑞 +s 𝐶 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑏 = ( 𝐴 +s ( 𝐵 +s 𝑟 ) ) } ) = { 𝑏 ∣ ( ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑏 = ( 𝐴 +s ( 𝑞 +s 𝐶 ) ) ∨ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑏 = ( 𝐴 +s ( 𝐵 +s 𝑟 ) ) ) } |
90 |
|
eqeq1 |
⊢ ( 𝑏 = 𝑐 → ( 𝑏 = ( 𝐴 +s ( 𝐵 +s 𝑟 ) ) ↔ 𝑐 = ( 𝐴 +s ( 𝐵 +s 𝑟 ) ) ) ) |
91 |
90
|
rexbidv |
⊢ ( 𝑏 = 𝑐 → ( ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑏 = ( 𝐴 +s ( 𝐵 +s 𝑟 ) ) ↔ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑐 = ( 𝐴 +s ( 𝐵 +s 𝑟 ) ) ) ) |
92 |
91
|
cbvabv |
⊢ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑏 = ( 𝐴 +s ( 𝐵 +s 𝑟 ) ) } = { 𝑐 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑐 = ( 𝐴 +s ( 𝐵 +s 𝑟 ) ) } |
93 |
92
|
uneq2i |
⊢ ( { 𝑏 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑏 = ( 𝐴 +s ( 𝑞 +s 𝐶 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑏 = ( 𝐴 +s ( 𝐵 +s 𝑟 ) ) } ) = ( { 𝑏 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑏 = ( 𝐴 +s ( 𝑞 +s 𝐶 ) ) } ∪ { 𝑐 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑐 = ( 𝐴 +s ( 𝐵 +s 𝑟 ) ) } ) |
94 |
88 89 93
|
3eqtr2i |
⊢ { 𝑏 ∣ ∃ 𝑖 ∈ ( { 𝑓 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑓 = ( 𝑞 +s 𝐶 ) } ∪ { 𝑔 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑔 = ( 𝐵 +s 𝑟 ) } ) 𝑏 = ( 𝐴 +s 𝑖 ) } = ( { 𝑏 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑏 = ( 𝐴 +s ( 𝑞 +s 𝐶 ) ) } ∪ { 𝑐 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑐 = ( 𝐴 +s ( 𝐵 +s 𝑟 ) ) } ) |
95 |
94
|
uneq2i |
⊢ ( { 𝑎 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑎 = ( 𝑝 +s ( 𝐵 +s 𝐶 ) ) } ∪ { 𝑏 ∣ ∃ 𝑖 ∈ ( { 𝑓 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑓 = ( 𝑞 +s 𝐶 ) } ∪ { 𝑔 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑔 = ( 𝐵 +s 𝑟 ) } ) 𝑏 = ( 𝐴 +s 𝑖 ) } ) = ( { 𝑎 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑎 = ( 𝑝 +s ( 𝐵 +s 𝐶 ) ) } ∪ ( { 𝑏 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑏 = ( 𝐴 +s ( 𝑞 +s 𝐶 ) ) } ∪ { 𝑐 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑐 = ( 𝐴 +s ( 𝐵 +s 𝑟 ) ) } ) ) |
96 |
|
unass |
⊢ ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑎 = ( 𝑝 +s ( 𝐵 +s 𝐶 ) ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑏 = ( 𝐴 +s ( 𝑞 +s 𝐶 ) ) } ) ∪ { 𝑐 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑐 = ( 𝐴 +s ( 𝐵 +s 𝑟 ) ) } ) = ( { 𝑎 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑎 = ( 𝑝 +s ( 𝐵 +s 𝐶 ) ) } ∪ ( { 𝑏 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑏 = ( 𝐴 +s ( 𝑞 +s 𝐶 ) ) } ∪ { 𝑐 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑐 = ( 𝐴 +s ( 𝐵 +s 𝑟 ) ) } ) ) |
97 |
95 96
|
eqtr4i |
⊢ ( { 𝑎 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑎 = ( 𝑝 +s ( 𝐵 +s 𝐶 ) ) } ∪ { 𝑏 ∣ ∃ 𝑖 ∈ ( { 𝑓 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑓 = ( 𝑞 +s 𝐶 ) } ∪ { 𝑔 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑔 = ( 𝐵 +s 𝑟 ) } ) 𝑏 = ( 𝐴 +s 𝑖 ) } ) = ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑎 = ( 𝑝 +s ( 𝐵 +s 𝐶 ) ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑏 = ( 𝐴 +s ( 𝑞 +s 𝐶 ) ) } ) ∪ { 𝑐 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑐 = ( 𝐴 +s ( 𝐵 +s 𝑟 ) ) } ) |
98 |
58 97
|
oveq12i |
⊢ ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( 𝑙 +s ( 𝐵 +s 𝐶 ) ) } ∪ { 𝑧 ∣ ∃ ℎ ∈ ( { 𝑑 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑑 = ( 𝑚 +s 𝐶 ) } ∪ { 𝑒 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑒 = ( 𝐵 +s 𝑛 ) } ) 𝑧 = ( 𝐴 +s ℎ ) } ) |s ( { 𝑎 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑎 = ( 𝑝 +s ( 𝐵 +s 𝐶 ) ) } ∪ { 𝑏 ∣ ∃ 𝑖 ∈ ( { 𝑓 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑓 = ( 𝑞 +s 𝐶 ) } ∪ { 𝑔 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑔 = ( 𝐵 +s 𝑟 ) } ) 𝑏 = ( 𝐴 +s 𝑖 ) } ) ) = ( ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( 𝑙 +s ( 𝐵 +s 𝐶 ) ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑧 = ( 𝐴 +s ( 𝑚 +s 𝐶 ) ) } ) ∪ { 𝑤 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑤 = ( 𝐴 +s ( 𝐵 +s 𝑛 ) ) } ) |s ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑎 = ( 𝑝 +s ( 𝐵 +s 𝐶 ) ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑏 = ( 𝐴 +s ( 𝑞 +s 𝐶 ) ) } ) ∪ { 𝑐 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑐 = ( 𝐴 +s ( 𝐵 +s 𝑟 ) ) } ) ) |
99 |
19 98
|
eqtrdi |
⊢ ( 𝜑 → ( 𝐴 +s ( 𝐵 +s 𝐶 ) ) = ( ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( 𝑙 +s ( 𝐵 +s 𝐶 ) ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑧 = ( 𝐴 +s ( 𝑚 +s 𝐶 ) ) } ) ∪ { 𝑤 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑤 = ( 𝐴 +s ( 𝐵 +s 𝑛 ) ) } ) |s ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑎 = ( 𝑝 +s ( 𝐵 +s 𝐶 ) ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑏 = ( 𝐴 +s ( 𝑞 +s 𝐶 ) ) } ) ∪ { 𝑐 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑐 = ( 𝐴 +s ( 𝐵 +s 𝑟 ) ) } ) ) ) |