Step |
Hyp |
Ref |
Expression |
1 |
|
addsasslem.1 |
|- ( ph -> A e. No ) |
2 |
|
addsasslem.2 |
|- ( ph -> B e. No ) |
3 |
|
addsasslem.3 |
|- ( ph -> C e. No ) |
4 |
|
lltropt |
|- ( _Left ` A ) < |
5 |
4
|
a1i |
|- ( ph -> ( _Left ` A ) < |
6 |
2 3
|
addscut |
|- ( ph -> ( ( B +s C ) e. No /\ ( { d | E. m e. ( _Left ` B ) d = ( m +s C ) } u. { e | E. n e. ( _Left ` C ) e = ( B +s n ) } ) < |
7 |
6
|
simp2d |
|- ( ph -> ( { d | E. m e. ( _Left ` B ) d = ( m +s C ) } u. { e | E. n e. ( _Left ` C ) e = ( B +s n ) } ) < |
8 |
6
|
simp3d |
|- ( ph -> { ( B +s C ) } < |
9 |
|
ovex |
|- ( B +s C ) e. _V |
10 |
9
|
snnz |
|- { ( B +s C ) } =/= (/) |
11 |
|
sslttr |
|- ( ( ( { d | E. m e. ( _Left ` B ) d = ( m +s C ) } u. { e | E. n e. ( _Left ` C ) e = ( B +s n ) } ) < ( { d | E. m e. ( _Left ` B ) d = ( m +s C ) } u. { e | E. n e. ( _Left ` C ) e = ( B +s n ) } ) < |
12 |
10 11
|
mp3an3 |
|- ( ( ( { d | E. m e. ( _Left ` B ) d = ( m +s C ) } u. { e | E. n e. ( _Left ` C ) e = ( B +s n ) } ) < ( { d | E. m e. ( _Left ` B ) d = ( m +s C ) } u. { e | E. n e. ( _Left ` C ) e = ( B +s n ) } ) < |
13 |
7 8 12
|
syl2anc |
|- ( ph -> ( { d | E. m e. ( _Left ` B ) d = ( m +s C ) } u. { e | E. n e. ( _Left ` C ) e = ( B +s n ) } ) < |
14 |
|
lrcut |
|- ( A e. No -> ( ( _Left ` A ) |s ( _Right ` A ) ) = A ) |
15 |
1 14
|
syl |
|- ( ph -> ( ( _Left ` A ) |s ( _Right ` A ) ) = A ) |
16 |
15
|
eqcomd |
|- ( ph -> A = ( ( _Left ` A ) |s ( _Right ` A ) ) ) |
17 |
|
addsval2 |
|- ( ( B e. No /\ C e. No ) -> ( B +s C ) = ( ( { d | E. m e. ( _Left ` B ) d = ( m +s C ) } u. { e | E. n e. ( _Left ` C ) e = ( B +s n ) } ) |s ( { f | E. q e. ( _Right ` B ) f = ( q +s C ) } u. { g | E. r e. ( _Right ` C ) g = ( B +s r ) } ) ) ) |
18 |
2 3 17
|
syl2anc |
|- ( ph -> ( B +s C ) = ( ( { d | E. m e. ( _Left ` B ) d = ( m +s C ) } u. { e | E. n e. ( _Left ` C ) e = ( B +s n ) } ) |s ( { f | E. q e. ( _Right ` B ) f = ( q +s C ) } u. { g | E. r e. ( _Right ` C ) g = ( B +s r ) } ) ) ) |
19 |
5 13 16 18
|
addsunif |
|- ( ph -> ( A +s ( B +s C ) ) = ( ( { y | E. l e. ( _Left ` A ) y = ( l +s ( B +s C ) ) } u. { z | E. h e. ( { d | E. m e. ( _Left ` B ) d = ( m +s C ) } u. { e | E. n e. ( _Left ` C ) e = ( B +s n ) } ) z = ( A +s h ) } ) |s ( { a | E. p e. ( _Right ` A ) a = ( p +s ( B +s C ) ) } u. { b | E. i e. ( { f | E. q e. ( _Right ` B ) f = ( q +s C ) } u. { g | E. r e. ( _Right ` C ) g = ( B +s r ) } ) b = ( A +s i ) } ) ) ) |
20 |
|
rexun |
|- ( E. h e. ( { d | E. m e. ( _Left ` B ) d = ( m +s C ) } u. { e | E. n e. ( _Left ` C ) e = ( B +s n ) } ) z = ( A +s h ) <-> ( E. h e. { d | E. m e. ( _Left ` B ) d = ( m +s C ) } z = ( A +s h ) \/ E. h e. { e | E. n e. ( _Left ` C ) e = ( B +s n ) } z = ( A +s h ) ) ) |
21 |
|
eqeq1 |
|- ( d = h -> ( d = ( m +s C ) <-> h = ( m +s C ) ) ) |
22 |
21
|
rexbidv |
|- ( d = h -> ( E. m e. ( _Left ` B ) d = ( m +s C ) <-> E. m e. ( _Left ` B ) h = ( m +s C ) ) ) |
23 |
22
|
rexab |
|- ( E. h e. { d | E. m e. ( _Left ` B ) d = ( m +s C ) } z = ( A +s h ) <-> E. h ( E. m e. ( _Left ` B ) h = ( m +s C ) /\ z = ( A +s h ) ) ) |
24 |
|
rexcom4 |
|- ( E. m e. ( _Left ` B ) E. h ( h = ( m +s C ) /\ z = ( A +s h ) ) <-> E. h E. m e. ( _Left ` B ) ( h = ( m +s C ) /\ z = ( A +s h ) ) ) |
25 |
|
ovex |
|- ( m +s C ) e. _V |
26 |
|
oveq2 |
|- ( h = ( m +s C ) -> ( A +s h ) = ( A +s ( m +s C ) ) ) |
27 |
26
|
eqeq2d |
|- ( h = ( m +s C ) -> ( z = ( A +s h ) <-> z = ( A +s ( m +s C ) ) ) ) |
28 |
25 27
|
ceqsexv |
|- ( E. h ( h = ( m +s C ) /\ z = ( A +s h ) ) <-> z = ( A +s ( m +s C ) ) ) |
29 |
28
|
rexbii |
|- ( E. m e. ( _Left ` B ) E. h ( h = ( m +s C ) /\ z = ( A +s h ) ) <-> E. m e. ( _Left ` B ) z = ( A +s ( m +s C ) ) ) |
30 |
|
r19.41v |
|- ( E. m e. ( _Left ` B ) ( h = ( m +s C ) /\ z = ( A +s h ) ) <-> ( E. m e. ( _Left ` B ) h = ( m +s C ) /\ z = ( A +s h ) ) ) |
31 |
30
|
exbii |
|- ( E. h E. m e. ( _Left ` B ) ( h = ( m +s C ) /\ z = ( A +s h ) ) <-> E. h ( E. m e. ( _Left ` B ) h = ( m +s C ) /\ z = ( A +s h ) ) ) |
32 |
24 29 31
|
3bitr3ri |
|- ( E. h ( E. m e. ( _Left ` B ) h = ( m +s C ) /\ z = ( A +s h ) ) <-> E. m e. ( _Left ` B ) z = ( A +s ( m +s C ) ) ) |
33 |
23 32
|
bitri |
|- ( E. h e. { d | E. m e. ( _Left ` B ) d = ( m +s C ) } z = ( A +s h ) <-> E. m e. ( _Left ` B ) z = ( A +s ( m +s C ) ) ) |
34 |
|
eqeq1 |
|- ( e = h -> ( e = ( B +s n ) <-> h = ( B +s n ) ) ) |
35 |
34
|
rexbidv |
|- ( e = h -> ( E. n e. ( _Left ` C ) e = ( B +s n ) <-> E. n e. ( _Left ` C ) h = ( B +s n ) ) ) |
36 |
35
|
rexab |
|- ( E. h e. { e | E. n e. ( _Left ` C ) e = ( B +s n ) } z = ( A +s h ) <-> E. h ( E. n e. ( _Left ` C ) h = ( B +s n ) /\ z = ( A +s h ) ) ) |
37 |
|
rexcom4 |
|- ( E. n e. ( _Left ` C ) E. h ( h = ( B +s n ) /\ z = ( A +s h ) ) <-> E. h E. n e. ( _Left ` C ) ( h = ( B +s n ) /\ z = ( A +s h ) ) ) |
38 |
|
ovex |
|- ( B +s n ) e. _V |
39 |
|
oveq2 |
|- ( h = ( B +s n ) -> ( A +s h ) = ( A +s ( B +s n ) ) ) |
40 |
39
|
eqeq2d |
|- ( h = ( B +s n ) -> ( z = ( A +s h ) <-> z = ( A +s ( B +s n ) ) ) ) |
41 |
38 40
|
ceqsexv |
|- ( E. h ( h = ( B +s n ) /\ z = ( A +s h ) ) <-> z = ( A +s ( B +s n ) ) ) |
42 |
41
|
rexbii |
|- ( E. n e. ( _Left ` C ) E. h ( h = ( B +s n ) /\ z = ( A +s h ) ) <-> E. n e. ( _Left ` C ) z = ( A +s ( B +s n ) ) ) |
43 |
|
r19.41v |
|- ( E. n e. ( _Left ` C ) ( h = ( B +s n ) /\ z = ( A +s h ) ) <-> ( E. n e. ( _Left ` C ) h = ( B +s n ) /\ z = ( A +s h ) ) ) |
44 |
43
|
exbii |
|- ( E. h E. n e. ( _Left ` C ) ( h = ( B +s n ) /\ z = ( A +s h ) ) <-> E. h ( E. n e. ( _Left ` C ) h = ( B +s n ) /\ z = ( A +s h ) ) ) |
45 |
37 42 44
|
3bitr3ri |
|- ( E. h ( E. n e. ( _Left ` C ) h = ( B +s n ) /\ z = ( A +s h ) ) <-> E. n e. ( _Left ` C ) z = ( A +s ( B +s n ) ) ) |
46 |
36 45
|
bitri |
|- ( E. h e. { e | E. n e. ( _Left ` C ) e = ( B +s n ) } z = ( A +s h ) <-> E. n e. ( _Left ` C ) z = ( A +s ( B +s n ) ) ) |
47 |
33 46
|
orbi12i |
|- ( ( E. h e. { d | E. m e. ( _Left ` B ) d = ( m +s C ) } z = ( A +s h ) \/ E. h e. { e | E. n e. ( _Left ` C ) e = ( B +s n ) } z = ( A +s h ) ) <-> ( E. m e. ( _Left ` B ) z = ( A +s ( m +s C ) ) \/ E. n e. ( _Left ` C ) z = ( A +s ( B +s n ) ) ) ) |
48 |
20 47
|
bitri |
|- ( E. h e. ( { d | E. m e. ( _Left ` B ) d = ( m +s C ) } u. { e | E. n e. ( _Left ` C ) e = ( B +s n ) } ) z = ( A +s h ) <-> ( E. m e. ( _Left ` B ) z = ( A +s ( m +s C ) ) \/ E. n e. ( _Left ` C ) z = ( A +s ( B +s n ) ) ) ) |
49 |
48
|
abbii |
|- { z | E. h e. ( { d | E. m e. ( _Left ` B ) d = ( m +s C ) } u. { e | E. n e. ( _Left ` C ) e = ( B +s n ) } ) z = ( A +s h ) } = { z | ( E. m e. ( _Left ` B ) z = ( A +s ( m +s C ) ) \/ E. n e. ( _Left ` C ) z = ( A +s ( B +s n ) ) ) } |
50 |
|
unab |
|- ( { z | E. m e. ( _Left ` B ) z = ( A +s ( m +s C ) ) } u. { z | E. n e. ( _Left ` C ) z = ( A +s ( B +s n ) ) } ) = { z | ( E. m e. ( _Left ` B ) z = ( A +s ( m +s C ) ) \/ E. n e. ( _Left ` C ) z = ( A +s ( B +s n ) ) ) } |
51 |
|
eqeq1 |
|- ( z = w -> ( z = ( A +s ( B +s n ) ) <-> w = ( A +s ( B +s n ) ) ) ) |
52 |
51
|
rexbidv |
|- ( z = w -> ( E. n e. ( _Left ` C ) z = ( A +s ( B +s n ) ) <-> E. n e. ( _Left ` C ) w = ( A +s ( B +s n ) ) ) ) |
53 |
52
|
cbvabv |
|- { z | E. n e. ( _Left ` C ) z = ( A +s ( B +s n ) ) } = { w | E. n e. ( _Left ` C ) w = ( A +s ( B +s n ) ) } |
54 |
53
|
uneq2i |
|- ( { z | E. m e. ( _Left ` B ) z = ( A +s ( m +s C ) ) } u. { z | E. n e. ( _Left ` C ) z = ( A +s ( B +s n ) ) } ) = ( { z | E. m e. ( _Left ` B ) z = ( A +s ( m +s C ) ) } u. { w | E. n e. ( _Left ` C ) w = ( A +s ( B +s n ) ) } ) |
55 |
49 50 54
|
3eqtr2i |
|- { z | E. h e. ( { d | E. m e. ( _Left ` B ) d = ( m +s C ) } u. { e | E. n e. ( _Left ` C ) e = ( B +s n ) } ) z = ( A +s h ) } = ( { z | E. m e. ( _Left ` B ) z = ( A +s ( m +s C ) ) } u. { w | E. n e. ( _Left ` C ) w = ( A +s ( B +s n ) ) } ) |
56 |
55
|
uneq2i |
|- ( { y | E. l e. ( _Left ` A ) y = ( l +s ( B +s C ) ) } u. { z | E. h e. ( { d | E. m e. ( _Left ` B ) d = ( m +s C ) } u. { e | E. n e. ( _Left ` C ) e = ( B +s n ) } ) z = ( A +s h ) } ) = ( { y | E. l e. ( _Left ` A ) y = ( l +s ( B +s C ) ) } u. ( { z | E. m e. ( _Left ` B ) z = ( A +s ( m +s C ) ) } u. { w | E. n e. ( _Left ` C ) w = ( A +s ( B +s n ) ) } ) ) |
57 |
|
unass |
|- ( ( { y | E. l e. ( _Left ` A ) y = ( l +s ( B +s C ) ) } u. { z | E. m e. ( _Left ` B ) z = ( A +s ( m +s C ) ) } ) u. { w | E. n e. ( _Left ` C ) w = ( A +s ( B +s n ) ) } ) = ( { y | E. l e. ( _Left ` A ) y = ( l +s ( B +s C ) ) } u. ( { z | E. m e. ( _Left ` B ) z = ( A +s ( m +s C ) ) } u. { w | E. n e. ( _Left ` C ) w = ( A +s ( B +s n ) ) } ) ) |
58 |
56 57
|
eqtr4i |
|- ( { y | E. l e. ( _Left ` A ) y = ( l +s ( B +s C ) ) } u. { z | E. h e. ( { d | E. m e. ( _Left ` B ) d = ( m +s C ) } u. { e | E. n e. ( _Left ` C ) e = ( B +s n ) } ) z = ( A +s h ) } ) = ( ( { y | E. l e. ( _Left ` A ) y = ( l +s ( B +s C ) ) } u. { z | E. m e. ( _Left ` B ) z = ( A +s ( m +s C ) ) } ) u. { w | E. n e. ( _Left ` C ) w = ( A +s ( B +s n ) ) } ) |
59 |
|
rexun |
|- ( E. i e. ( { f | E. q e. ( _Right ` B ) f = ( q +s C ) } u. { g | E. r e. ( _Right ` C ) g = ( B +s r ) } ) b = ( A +s i ) <-> ( E. i e. { f | E. q e. ( _Right ` B ) f = ( q +s C ) } b = ( A +s i ) \/ E. i e. { g | E. r e. ( _Right ` C ) g = ( B +s r ) } b = ( A +s i ) ) ) |
60 |
|
eqeq1 |
|- ( f = i -> ( f = ( q +s C ) <-> i = ( q +s C ) ) ) |
61 |
60
|
rexbidv |
|- ( f = i -> ( E. q e. ( _Right ` B ) f = ( q +s C ) <-> E. q e. ( _Right ` B ) i = ( q +s C ) ) ) |
62 |
61
|
rexab |
|- ( E. i e. { f | E. q e. ( _Right ` B ) f = ( q +s C ) } b = ( A +s i ) <-> E. i ( E. q e. ( _Right ` B ) i = ( q +s C ) /\ b = ( A +s i ) ) ) |
63 |
|
rexcom4 |
|- ( E. q e. ( _Right ` B ) E. i ( i = ( q +s C ) /\ b = ( A +s i ) ) <-> E. i E. q e. ( _Right ` B ) ( i = ( q +s C ) /\ b = ( A +s i ) ) ) |
64 |
|
ovex |
|- ( q +s C ) e. _V |
65 |
|
oveq2 |
|- ( i = ( q +s C ) -> ( A +s i ) = ( A +s ( q +s C ) ) ) |
66 |
65
|
eqeq2d |
|- ( i = ( q +s C ) -> ( b = ( A +s i ) <-> b = ( A +s ( q +s C ) ) ) ) |
67 |
64 66
|
ceqsexv |
|- ( E. i ( i = ( q +s C ) /\ b = ( A +s i ) ) <-> b = ( A +s ( q +s C ) ) ) |
68 |
67
|
rexbii |
|- ( E. q e. ( _Right ` B ) E. i ( i = ( q +s C ) /\ b = ( A +s i ) ) <-> E. q e. ( _Right ` B ) b = ( A +s ( q +s C ) ) ) |
69 |
|
r19.41v |
|- ( E. q e. ( _Right ` B ) ( i = ( q +s C ) /\ b = ( A +s i ) ) <-> ( E. q e. ( _Right ` B ) i = ( q +s C ) /\ b = ( A +s i ) ) ) |
70 |
69
|
exbii |
|- ( E. i E. q e. ( _Right ` B ) ( i = ( q +s C ) /\ b = ( A +s i ) ) <-> E. i ( E. q e. ( _Right ` B ) i = ( q +s C ) /\ b = ( A +s i ) ) ) |
71 |
63 68 70
|
3bitr3ri |
|- ( E. i ( E. q e. ( _Right ` B ) i = ( q +s C ) /\ b = ( A +s i ) ) <-> E. q e. ( _Right ` B ) b = ( A +s ( q +s C ) ) ) |
72 |
62 71
|
bitri |
|- ( E. i e. { f | E. q e. ( _Right ` B ) f = ( q +s C ) } b = ( A +s i ) <-> E. q e. ( _Right ` B ) b = ( A +s ( q +s C ) ) ) |
73 |
|
eqeq1 |
|- ( g = i -> ( g = ( B +s r ) <-> i = ( B +s r ) ) ) |
74 |
73
|
rexbidv |
|- ( g = i -> ( E. r e. ( _Right ` C ) g = ( B +s r ) <-> E. r e. ( _Right ` C ) i = ( B +s r ) ) ) |
75 |
74
|
rexab |
|- ( E. i e. { g | E. r e. ( _Right ` C ) g = ( B +s r ) } b = ( A +s i ) <-> E. i ( E. r e. ( _Right ` C ) i = ( B +s r ) /\ b = ( A +s i ) ) ) |
76 |
|
rexcom4 |
|- ( E. r e. ( _Right ` C ) E. i ( i = ( B +s r ) /\ b = ( A +s i ) ) <-> E. i E. r e. ( _Right ` C ) ( i = ( B +s r ) /\ b = ( A +s i ) ) ) |
77 |
|
ovex |
|- ( B +s r ) e. _V |
78 |
|
oveq2 |
|- ( i = ( B +s r ) -> ( A +s i ) = ( A +s ( B +s r ) ) ) |
79 |
78
|
eqeq2d |
|- ( i = ( B +s r ) -> ( b = ( A +s i ) <-> b = ( A +s ( B +s r ) ) ) ) |
80 |
77 79
|
ceqsexv |
|- ( E. i ( i = ( B +s r ) /\ b = ( A +s i ) ) <-> b = ( A +s ( B +s r ) ) ) |
81 |
80
|
rexbii |
|- ( E. r e. ( _Right ` C ) E. i ( i = ( B +s r ) /\ b = ( A +s i ) ) <-> E. r e. ( _Right ` C ) b = ( A +s ( B +s r ) ) ) |
82 |
|
r19.41v |
|- ( E. r e. ( _Right ` C ) ( i = ( B +s r ) /\ b = ( A +s i ) ) <-> ( E. r e. ( _Right ` C ) i = ( B +s r ) /\ b = ( A +s i ) ) ) |
83 |
82
|
exbii |
|- ( E. i E. r e. ( _Right ` C ) ( i = ( B +s r ) /\ b = ( A +s i ) ) <-> E. i ( E. r e. ( _Right ` C ) i = ( B +s r ) /\ b = ( A +s i ) ) ) |
84 |
76 81 83
|
3bitr3ri |
|- ( E. i ( E. r e. ( _Right ` C ) i = ( B +s r ) /\ b = ( A +s i ) ) <-> E. r e. ( _Right ` C ) b = ( A +s ( B +s r ) ) ) |
85 |
75 84
|
bitri |
|- ( E. i e. { g | E. r e. ( _Right ` C ) g = ( B +s r ) } b = ( A +s i ) <-> E. r e. ( _Right ` C ) b = ( A +s ( B +s r ) ) ) |
86 |
72 85
|
orbi12i |
|- ( ( E. i e. { f | E. q e. ( _Right ` B ) f = ( q +s C ) } b = ( A +s i ) \/ E. i e. { g | E. r e. ( _Right ` C ) g = ( B +s r ) } b = ( A +s i ) ) <-> ( E. q e. ( _Right ` B ) b = ( A +s ( q +s C ) ) \/ E. r e. ( _Right ` C ) b = ( A +s ( B +s r ) ) ) ) |
87 |
59 86
|
bitri |
|- ( E. i e. ( { f | E. q e. ( _Right ` B ) f = ( q +s C ) } u. { g | E. r e. ( _Right ` C ) g = ( B +s r ) } ) b = ( A +s i ) <-> ( E. q e. ( _Right ` B ) b = ( A +s ( q +s C ) ) \/ E. r e. ( _Right ` C ) b = ( A +s ( B +s r ) ) ) ) |
88 |
87
|
abbii |
|- { b | E. i e. ( { f | E. q e. ( _Right ` B ) f = ( q +s C ) } u. { g | E. r e. ( _Right ` C ) g = ( B +s r ) } ) b = ( A +s i ) } = { b | ( E. q e. ( _Right ` B ) b = ( A +s ( q +s C ) ) \/ E. r e. ( _Right ` C ) b = ( A +s ( B +s r ) ) ) } |
89 |
|
unab |
|- ( { b | E. q e. ( _Right ` B ) b = ( A +s ( q +s C ) ) } u. { b | E. r e. ( _Right ` C ) b = ( A +s ( B +s r ) ) } ) = { b | ( E. q e. ( _Right ` B ) b = ( A +s ( q +s C ) ) \/ E. r e. ( _Right ` C ) b = ( A +s ( B +s r ) ) ) } |
90 |
|
eqeq1 |
|- ( b = c -> ( b = ( A +s ( B +s r ) ) <-> c = ( A +s ( B +s r ) ) ) ) |
91 |
90
|
rexbidv |
|- ( b = c -> ( E. r e. ( _Right ` C ) b = ( A +s ( B +s r ) ) <-> E. r e. ( _Right ` C ) c = ( A +s ( B +s r ) ) ) ) |
92 |
91
|
cbvabv |
|- { b | E. r e. ( _Right ` C ) b = ( A +s ( B +s r ) ) } = { c | E. r e. ( _Right ` C ) c = ( A +s ( B +s r ) ) } |
93 |
92
|
uneq2i |
|- ( { b | E. q e. ( _Right ` B ) b = ( A +s ( q +s C ) ) } u. { b | E. r e. ( _Right ` C ) b = ( A +s ( B +s r ) ) } ) = ( { b | E. q e. ( _Right ` B ) b = ( A +s ( q +s C ) ) } u. { c | E. r e. ( _Right ` C ) c = ( A +s ( B +s r ) ) } ) |
94 |
88 89 93
|
3eqtr2i |
|- { b | E. i e. ( { f | E. q e. ( _Right ` B ) f = ( q +s C ) } u. { g | E. r e. ( _Right ` C ) g = ( B +s r ) } ) b = ( A +s i ) } = ( { b | E. q e. ( _Right ` B ) b = ( A +s ( q +s C ) ) } u. { c | E. r e. ( _Right ` C ) c = ( A +s ( B +s r ) ) } ) |
95 |
94
|
uneq2i |
|- ( { a | E. p e. ( _Right ` A ) a = ( p +s ( B +s C ) ) } u. { b | E. i e. ( { f | E. q e. ( _Right ` B ) f = ( q +s C ) } u. { g | E. r e. ( _Right ` C ) g = ( B +s r ) } ) b = ( A +s i ) } ) = ( { a | E. p e. ( _Right ` A ) a = ( p +s ( B +s C ) ) } u. ( { b | E. q e. ( _Right ` B ) b = ( A +s ( q +s C ) ) } u. { c | E. r e. ( _Right ` C ) c = ( A +s ( B +s r ) ) } ) ) |
96 |
|
unass |
|- ( ( { a | E. p e. ( _Right ` A ) a = ( p +s ( B +s C ) ) } u. { b | E. q e. ( _Right ` B ) b = ( A +s ( q +s C ) ) } ) u. { c | E. r e. ( _Right ` C ) c = ( A +s ( B +s r ) ) } ) = ( { a | E. p e. ( _Right ` A ) a = ( p +s ( B +s C ) ) } u. ( { b | E. q e. ( _Right ` B ) b = ( A +s ( q +s C ) ) } u. { c | E. r e. ( _Right ` C ) c = ( A +s ( B +s r ) ) } ) ) |
97 |
95 96
|
eqtr4i |
|- ( { a | E. p e. ( _Right ` A ) a = ( p +s ( B +s C ) ) } u. { b | E. i e. ( { f | E. q e. ( _Right ` B ) f = ( q +s C ) } u. { g | E. r e. ( _Right ` C ) g = ( B +s r ) } ) b = ( A +s i ) } ) = ( ( { a | E. p e. ( _Right ` A ) a = ( p +s ( B +s C ) ) } u. { b | E. q e. ( _Right ` B ) b = ( A +s ( q +s C ) ) } ) u. { c | E. r e. ( _Right ` C ) c = ( A +s ( B +s r ) ) } ) |
98 |
58 97
|
oveq12i |
|- ( ( { y | E. l e. ( _Left ` A ) y = ( l +s ( B +s C ) ) } u. { z | E. h e. ( { d | E. m e. ( _Left ` B ) d = ( m +s C ) } u. { e | E. n e. ( _Left ` C ) e = ( B +s n ) } ) z = ( A +s h ) } ) |s ( { a | E. p e. ( _Right ` A ) a = ( p +s ( B +s C ) ) } u. { b | E. i e. ( { f | E. q e. ( _Right ` B ) f = ( q +s C ) } u. { g | E. r e. ( _Right ` C ) g = ( B +s r ) } ) b = ( A +s i ) } ) ) = ( ( ( { y | E. l e. ( _Left ` A ) y = ( l +s ( B +s C ) ) } u. { z | E. m e. ( _Left ` B ) z = ( A +s ( m +s C ) ) } ) u. { w | E. n e. ( _Left ` C ) w = ( A +s ( B +s n ) ) } ) |s ( ( { a | E. p e. ( _Right ` A ) a = ( p +s ( B +s C ) ) } u. { b | E. q e. ( _Right ` B ) b = ( A +s ( q +s C ) ) } ) u. { c | E. r e. ( _Right ` C ) c = ( A +s ( B +s r ) ) } ) ) |
99 |
19 98
|
eqtrdi |
|- ( ph -> ( A +s ( B +s C ) ) = ( ( ( { y | E. l e. ( _Left ` A ) y = ( l +s ( B +s C ) ) } u. { z | E. m e. ( _Left ` B ) z = ( A +s ( m +s C ) ) } ) u. { w | E. n e. ( _Left ` C ) w = ( A +s ( B +s n ) ) } ) |s ( ( { a | E. p e. ( _Right ` A ) a = ( p +s ( B +s C ) ) } u. { b | E. q e. ( _Right ` B ) b = ( A +s ( q +s C ) ) } ) u. { c | E. r e. ( _Right ` C ) c = ( A +s ( B +s r ) ) } ) ) ) |