Metamath Proof Explorer


Theorem addsasslem1

Description: Lemma for addition associativity. Expand one form of the triple sum. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Hypotheses addsasslem.1 ( 𝜑𝐴 No )
addsasslem.2 ( 𝜑𝐵 No )
addsasslem.3 ( 𝜑𝐶 No )
Assertion addsasslem1 ( 𝜑 → ( ( 𝐴 +s 𝐵 ) +s 𝐶 ) = ( ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( ( 𝑙 +s 𝐵 ) +s 𝐶 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑧 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) } ) ∪ { 𝑤 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑤 = ( ( 𝐴 +s 𝐵 ) +s 𝑛 ) } ) |s ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑎 = ( ( 𝑝 +s 𝐵 ) +s 𝐶 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) } ) ∪ { 𝑐 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑐 = ( ( 𝐴 +s 𝐵 ) +s 𝑟 ) } ) ) )

Proof

Step Hyp Ref Expression
1 addsasslem.1 ( 𝜑𝐴 No )
2 addsasslem.2 ( 𝜑𝐵 No )
3 addsasslem.3 ( 𝜑𝐶 No )
4 1 2 addscut ( 𝜑 → ( ( 𝐴 +s 𝐵 ) ∈ No ∧ ( { 𝑑 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑑 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑒 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑒 = ( 𝐴 +s 𝑚 ) } ) <<s { ( 𝐴 +s 𝐵 ) } ∧ { ( 𝐴 +s 𝐵 ) } <<s ( { 𝑓 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑓 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑔 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑔 = ( 𝐴 +s 𝑞 ) } ) ) )
5 4 simp2d ( 𝜑 → ( { 𝑑 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑑 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑒 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑒 = ( 𝐴 +s 𝑚 ) } ) <<s { ( 𝐴 +s 𝐵 ) } )
6 4 simp3d ( 𝜑 → { ( 𝐴 +s 𝐵 ) } <<s ( { 𝑓 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑓 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑔 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑔 = ( 𝐴 +s 𝑞 ) } ) )
7 ovex ( 𝐴 +s 𝐵 ) ∈ V
8 7 snnz { ( 𝐴 +s 𝐵 ) } ≠ ∅
9 sslttr ( ( ( { 𝑑 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑑 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑒 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑒 = ( 𝐴 +s 𝑚 ) } ) <<s { ( 𝐴 +s 𝐵 ) } ∧ { ( 𝐴 +s 𝐵 ) } <<s ( { 𝑓 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑓 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑔 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑔 = ( 𝐴 +s 𝑞 ) } ) ∧ { ( 𝐴 +s 𝐵 ) } ≠ ∅ ) → ( { 𝑑 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑑 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑒 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑒 = ( 𝐴 +s 𝑚 ) } ) <<s ( { 𝑓 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑓 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑔 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑔 = ( 𝐴 +s 𝑞 ) } ) )
10 8 9 mp3an3 ( ( ( { 𝑑 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑑 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑒 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑒 = ( 𝐴 +s 𝑚 ) } ) <<s { ( 𝐴 +s 𝐵 ) } ∧ { ( 𝐴 +s 𝐵 ) } <<s ( { 𝑓 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑓 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑔 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑔 = ( 𝐴 +s 𝑞 ) } ) ) → ( { 𝑑 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑑 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑒 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑒 = ( 𝐴 +s 𝑚 ) } ) <<s ( { 𝑓 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑓 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑔 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑔 = ( 𝐴 +s 𝑞 ) } ) )
11 5 6 10 syl2anc ( 𝜑 → ( { 𝑑 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑑 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑒 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑒 = ( 𝐴 +s 𝑚 ) } ) <<s ( { 𝑓 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑓 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑔 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑔 = ( 𝐴 +s 𝑞 ) } ) )
12 lltropt ( L ‘ 𝐶 ) <<s ( R ‘ 𝐶 )
13 12 a1i ( 𝜑 → ( L ‘ 𝐶 ) <<s ( R ‘ 𝐶 ) )
14 addsval2 ( ( 𝐴 No 𝐵 No ) → ( 𝐴 +s 𝐵 ) = ( ( { 𝑑 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑑 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑒 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑒 = ( 𝐴 +s 𝑚 ) } ) |s ( { 𝑓 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑓 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑔 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑔 = ( 𝐴 +s 𝑞 ) } ) ) )
15 1 2 14 syl2anc ( 𝜑 → ( 𝐴 +s 𝐵 ) = ( ( { 𝑑 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑑 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑒 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑒 = ( 𝐴 +s 𝑚 ) } ) |s ( { 𝑓 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑓 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑔 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑔 = ( 𝐴 +s 𝑞 ) } ) ) )
16 lrcut ( 𝐶 No → ( ( L ‘ 𝐶 ) |s ( R ‘ 𝐶 ) ) = 𝐶 )
17 3 16 syl ( 𝜑 → ( ( L ‘ 𝐶 ) |s ( R ‘ 𝐶 ) ) = 𝐶 )
18 17 eqcomd ( 𝜑𝐶 = ( ( L ‘ 𝐶 ) |s ( R ‘ 𝐶 ) ) )
19 11 13 15 18 addsunif ( 𝜑 → ( ( 𝐴 +s 𝐵 ) +s 𝐶 ) = ( ( { 𝑦 ∣ ∃ ∈ ( { 𝑑 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑑 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑒 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑒 = ( 𝐴 +s 𝑚 ) } ) 𝑦 = ( +s 𝐶 ) } ∪ { 𝑤 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑤 = ( ( 𝐴 +s 𝐵 ) +s 𝑛 ) } ) |s ( { 𝑎 ∣ ∃ 𝑖 ∈ ( { 𝑓 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑓 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑔 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑔 = ( 𝐴 +s 𝑞 ) } ) 𝑎 = ( 𝑖 +s 𝐶 ) } ∪ { 𝑐 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑐 = ( ( 𝐴 +s 𝐵 ) +s 𝑟 ) } ) ) )
20 unab ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( ( 𝑙 +s 𝐵 ) +s 𝐶 ) } ∪ { 𝑦 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) } ) = { 𝑦 ∣ ( ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( ( 𝑙 +s 𝐵 ) +s 𝐶 ) ∨ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) ) }
21 eqeq1 ( 𝑧 = 𝑦 → ( 𝑧 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) ↔ 𝑦 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) ) )
22 21 rexbidv ( 𝑧 = 𝑦 → ( ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑧 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) ↔ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) ) )
23 22 cbvabv { 𝑧 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑧 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) } = { 𝑦 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) }
24 23 uneq2i ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( ( 𝑙 +s 𝐵 ) +s 𝐶 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑧 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) } ) = ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( ( 𝑙 +s 𝐵 ) +s 𝐶 ) } ∪ { 𝑦 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) } )
25 rexun ( ∃ ∈ ( { 𝑑 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑑 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑒 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑒 = ( 𝐴 +s 𝑚 ) } ) 𝑦 = ( +s 𝐶 ) ↔ ( ∃ ∈ { 𝑑 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑑 = ( 𝑙 +s 𝐵 ) } 𝑦 = ( +s 𝐶 ) ∨ ∃ ∈ { 𝑒 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑒 = ( 𝐴 +s 𝑚 ) } 𝑦 = ( +s 𝐶 ) ) )
26 eqeq1 ( 𝑑 = → ( 𝑑 = ( 𝑙 +s 𝐵 ) ↔ = ( 𝑙 +s 𝐵 ) ) )
27 26 rexbidv ( 𝑑 = → ( ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑑 = ( 𝑙 +s 𝐵 ) ↔ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) = ( 𝑙 +s 𝐵 ) ) )
28 27 rexab ( ∃ ∈ { 𝑑 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑑 = ( 𝑙 +s 𝐵 ) } 𝑦 = ( +s 𝐶 ) ↔ ∃ ( ∃ 𝑙 ∈ ( L ‘ 𝐴 ) = ( 𝑙 +s 𝐵 ) ∧ 𝑦 = ( +s 𝐶 ) ) )
29 rexcom4 ( ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ ( = ( 𝑙 +s 𝐵 ) ∧ 𝑦 = ( +s 𝐶 ) ) ↔ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ( = ( 𝑙 +s 𝐵 ) ∧ 𝑦 = ( +s 𝐶 ) ) )
30 ovex ( 𝑙 +s 𝐵 ) ∈ V
31 oveq1 ( = ( 𝑙 +s 𝐵 ) → ( +s 𝐶 ) = ( ( 𝑙 +s 𝐵 ) +s 𝐶 ) )
32 31 eqeq2d ( = ( 𝑙 +s 𝐵 ) → ( 𝑦 = ( +s 𝐶 ) ↔ 𝑦 = ( ( 𝑙 +s 𝐵 ) +s 𝐶 ) ) )
33 30 32 ceqsexv ( ∃ ( = ( 𝑙 +s 𝐵 ) ∧ 𝑦 = ( +s 𝐶 ) ) ↔ 𝑦 = ( ( 𝑙 +s 𝐵 ) +s 𝐶 ) )
34 33 rexbii ( ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ ( = ( 𝑙 +s 𝐵 ) ∧ 𝑦 = ( +s 𝐶 ) ) ↔ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( ( 𝑙 +s 𝐵 ) +s 𝐶 ) )
35 r19.41v ( ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ( = ( 𝑙 +s 𝐵 ) ∧ 𝑦 = ( +s 𝐶 ) ) ↔ ( ∃ 𝑙 ∈ ( L ‘ 𝐴 ) = ( 𝑙 +s 𝐵 ) ∧ 𝑦 = ( +s 𝐶 ) ) )
36 35 exbii ( ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ( = ( 𝑙 +s 𝐵 ) ∧ 𝑦 = ( +s 𝐶 ) ) ↔ ∃ ( ∃ 𝑙 ∈ ( L ‘ 𝐴 ) = ( 𝑙 +s 𝐵 ) ∧ 𝑦 = ( +s 𝐶 ) ) )
37 29 34 36 3bitr3ri ( ∃ ( ∃ 𝑙 ∈ ( L ‘ 𝐴 ) = ( 𝑙 +s 𝐵 ) ∧ 𝑦 = ( +s 𝐶 ) ) ↔ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( ( 𝑙 +s 𝐵 ) +s 𝐶 ) )
38 28 37 bitri ( ∃ ∈ { 𝑑 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑑 = ( 𝑙 +s 𝐵 ) } 𝑦 = ( +s 𝐶 ) ↔ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( ( 𝑙 +s 𝐵 ) +s 𝐶 ) )
39 eqeq1 ( 𝑒 = → ( 𝑒 = ( 𝐴 +s 𝑚 ) ↔ = ( 𝐴 +s 𝑚 ) ) )
40 39 rexbidv ( 𝑒 = → ( ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑒 = ( 𝐴 +s 𝑚 ) ↔ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) = ( 𝐴 +s 𝑚 ) ) )
41 40 rexab ( ∃ ∈ { 𝑒 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑒 = ( 𝐴 +s 𝑚 ) } 𝑦 = ( +s 𝐶 ) ↔ ∃ ( ∃ 𝑚 ∈ ( L ‘ 𝐵 ) = ( 𝐴 +s 𝑚 ) ∧ 𝑦 = ( +s 𝐶 ) ) )
42 rexcom4 ( ∃ 𝑚 ∈ ( L ‘ 𝐵 ) ∃ ( = ( 𝐴 +s 𝑚 ) ∧ 𝑦 = ( +s 𝐶 ) ) ↔ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) ( = ( 𝐴 +s 𝑚 ) ∧ 𝑦 = ( +s 𝐶 ) ) )
43 ovex ( 𝐴 +s 𝑚 ) ∈ V
44 oveq1 ( = ( 𝐴 +s 𝑚 ) → ( +s 𝐶 ) = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) )
45 44 eqeq2d ( = ( 𝐴 +s 𝑚 ) → ( 𝑦 = ( +s 𝐶 ) ↔ 𝑦 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) ) )
46 43 45 ceqsexv ( ∃ ( = ( 𝐴 +s 𝑚 ) ∧ 𝑦 = ( +s 𝐶 ) ) ↔ 𝑦 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) )
47 46 rexbii ( ∃ 𝑚 ∈ ( L ‘ 𝐵 ) ∃ ( = ( 𝐴 +s 𝑚 ) ∧ 𝑦 = ( +s 𝐶 ) ) ↔ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) )
48 r19.41v ( ∃ 𝑚 ∈ ( L ‘ 𝐵 ) ( = ( 𝐴 +s 𝑚 ) ∧ 𝑦 = ( +s 𝐶 ) ) ↔ ( ∃ 𝑚 ∈ ( L ‘ 𝐵 ) = ( 𝐴 +s 𝑚 ) ∧ 𝑦 = ( +s 𝐶 ) ) )
49 48 exbii ( ∃ 𝑚 ∈ ( L ‘ 𝐵 ) ( = ( 𝐴 +s 𝑚 ) ∧ 𝑦 = ( +s 𝐶 ) ) ↔ ∃ ( ∃ 𝑚 ∈ ( L ‘ 𝐵 ) = ( 𝐴 +s 𝑚 ) ∧ 𝑦 = ( +s 𝐶 ) ) )
50 42 47 49 3bitr3ri ( ∃ ( ∃ 𝑚 ∈ ( L ‘ 𝐵 ) = ( 𝐴 +s 𝑚 ) ∧ 𝑦 = ( +s 𝐶 ) ) ↔ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) )
51 41 50 bitri ( ∃ ∈ { 𝑒 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑒 = ( 𝐴 +s 𝑚 ) } 𝑦 = ( +s 𝐶 ) ↔ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) )
52 38 51 orbi12i ( ( ∃ ∈ { 𝑑 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑑 = ( 𝑙 +s 𝐵 ) } 𝑦 = ( +s 𝐶 ) ∨ ∃ ∈ { 𝑒 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑒 = ( 𝐴 +s 𝑚 ) } 𝑦 = ( +s 𝐶 ) ) ↔ ( ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( ( 𝑙 +s 𝐵 ) +s 𝐶 ) ∨ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) ) )
53 25 52 bitri ( ∃ ∈ ( { 𝑑 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑑 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑒 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑒 = ( 𝐴 +s 𝑚 ) } ) 𝑦 = ( +s 𝐶 ) ↔ ( ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( ( 𝑙 +s 𝐵 ) +s 𝐶 ) ∨ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) ) )
54 53 abbii { 𝑦 ∣ ∃ ∈ ( { 𝑑 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑑 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑒 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑒 = ( 𝐴 +s 𝑚 ) } ) 𝑦 = ( +s 𝐶 ) } = { 𝑦 ∣ ( ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( ( 𝑙 +s 𝐵 ) +s 𝐶 ) ∨ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) ) }
55 20 24 54 3eqtr4ri { 𝑦 ∣ ∃ ∈ ( { 𝑑 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑑 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑒 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑒 = ( 𝐴 +s 𝑚 ) } ) 𝑦 = ( +s 𝐶 ) } = ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( ( 𝑙 +s 𝐵 ) +s 𝐶 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑧 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) } )
56 55 uneq1i ( { 𝑦 ∣ ∃ ∈ ( { 𝑑 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑑 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑒 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑒 = ( 𝐴 +s 𝑚 ) } ) 𝑦 = ( +s 𝐶 ) } ∪ { 𝑤 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑤 = ( ( 𝐴 +s 𝐵 ) +s 𝑛 ) } ) = ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( ( 𝑙 +s 𝐵 ) +s 𝐶 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑧 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) } ) ∪ { 𝑤 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑤 = ( ( 𝐴 +s 𝐵 ) +s 𝑛 ) } )
57 unab ( { 𝑎 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑎 = ( ( 𝑝 +s 𝐵 ) +s 𝐶 ) } ∪ { 𝑎 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) } ) = { 𝑎 ∣ ( ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑎 = ( ( 𝑝 +s 𝐵 ) +s 𝐶 ) ∨ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) ) }
58 eqeq1 ( 𝑏 = 𝑎 → ( 𝑏 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) ↔ 𝑎 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) ) )
59 58 rexbidv ( 𝑏 = 𝑎 → ( ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) ↔ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) ) )
60 59 cbvabv { 𝑏 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) } = { 𝑎 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) }
61 60 uneq2i ( { 𝑎 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑎 = ( ( 𝑝 +s 𝐵 ) +s 𝐶 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) } ) = ( { 𝑎 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑎 = ( ( 𝑝 +s 𝐵 ) +s 𝐶 ) } ∪ { 𝑎 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) } )
62 rexun ( ∃ 𝑖 ∈ ( { 𝑓 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑓 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑔 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑔 = ( 𝐴 +s 𝑞 ) } ) 𝑎 = ( 𝑖 +s 𝐶 ) ↔ ( ∃ 𝑖 ∈ { 𝑓 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑓 = ( 𝑝 +s 𝐵 ) } 𝑎 = ( 𝑖 +s 𝐶 ) ∨ ∃ 𝑖 ∈ { 𝑔 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑔 = ( 𝐴 +s 𝑞 ) } 𝑎 = ( 𝑖 +s 𝐶 ) ) )
63 eqeq1 ( 𝑓 = 𝑖 → ( 𝑓 = ( 𝑝 +s 𝐵 ) ↔ 𝑖 = ( 𝑝 +s 𝐵 ) ) )
64 63 rexbidv ( 𝑓 = 𝑖 → ( ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑓 = ( 𝑝 +s 𝐵 ) ↔ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑖 = ( 𝑝 +s 𝐵 ) ) )
65 64 rexab ( ∃ 𝑖 ∈ { 𝑓 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑓 = ( 𝑝 +s 𝐵 ) } 𝑎 = ( 𝑖 +s 𝐶 ) ↔ ∃ 𝑖 ( ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑖 = ( 𝑝 +s 𝐵 ) ∧ 𝑎 = ( 𝑖 +s 𝐶 ) ) )
66 rexcom4 ( ∃ 𝑝 ∈ ( R ‘ 𝐴 ) ∃ 𝑖 ( 𝑖 = ( 𝑝 +s 𝐵 ) ∧ 𝑎 = ( 𝑖 +s 𝐶 ) ) ↔ ∃ 𝑖𝑝 ∈ ( R ‘ 𝐴 ) ( 𝑖 = ( 𝑝 +s 𝐵 ) ∧ 𝑎 = ( 𝑖 +s 𝐶 ) ) )
67 ovex ( 𝑝 +s 𝐵 ) ∈ V
68 oveq1 ( 𝑖 = ( 𝑝 +s 𝐵 ) → ( 𝑖 +s 𝐶 ) = ( ( 𝑝 +s 𝐵 ) +s 𝐶 ) )
69 68 eqeq2d ( 𝑖 = ( 𝑝 +s 𝐵 ) → ( 𝑎 = ( 𝑖 +s 𝐶 ) ↔ 𝑎 = ( ( 𝑝 +s 𝐵 ) +s 𝐶 ) ) )
70 67 69 ceqsexv ( ∃ 𝑖 ( 𝑖 = ( 𝑝 +s 𝐵 ) ∧ 𝑎 = ( 𝑖 +s 𝐶 ) ) ↔ 𝑎 = ( ( 𝑝 +s 𝐵 ) +s 𝐶 ) )
71 70 rexbii ( ∃ 𝑝 ∈ ( R ‘ 𝐴 ) ∃ 𝑖 ( 𝑖 = ( 𝑝 +s 𝐵 ) ∧ 𝑎 = ( 𝑖 +s 𝐶 ) ) ↔ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑎 = ( ( 𝑝 +s 𝐵 ) +s 𝐶 ) )
72 r19.41v ( ∃ 𝑝 ∈ ( R ‘ 𝐴 ) ( 𝑖 = ( 𝑝 +s 𝐵 ) ∧ 𝑎 = ( 𝑖 +s 𝐶 ) ) ↔ ( ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑖 = ( 𝑝 +s 𝐵 ) ∧ 𝑎 = ( 𝑖 +s 𝐶 ) ) )
73 72 exbii ( ∃ 𝑖𝑝 ∈ ( R ‘ 𝐴 ) ( 𝑖 = ( 𝑝 +s 𝐵 ) ∧ 𝑎 = ( 𝑖 +s 𝐶 ) ) ↔ ∃ 𝑖 ( ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑖 = ( 𝑝 +s 𝐵 ) ∧ 𝑎 = ( 𝑖 +s 𝐶 ) ) )
74 66 71 73 3bitr3ri ( ∃ 𝑖 ( ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑖 = ( 𝑝 +s 𝐵 ) ∧ 𝑎 = ( 𝑖 +s 𝐶 ) ) ↔ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑎 = ( ( 𝑝 +s 𝐵 ) +s 𝐶 ) )
75 65 74 bitri ( ∃ 𝑖 ∈ { 𝑓 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑓 = ( 𝑝 +s 𝐵 ) } 𝑎 = ( 𝑖 +s 𝐶 ) ↔ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑎 = ( ( 𝑝 +s 𝐵 ) +s 𝐶 ) )
76 eqeq1 ( 𝑔 = 𝑖 → ( 𝑔 = ( 𝐴 +s 𝑞 ) ↔ 𝑖 = ( 𝐴 +s 𝑞 ) ) )
77 76 rexbidv ( 𝑔 = 𝑖 → ( ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑔 = ( 𝐴 +s 𝑞 ) ↔ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑖 = ( 𝐴 +s 𝑞 ) ) )
78 77 rexab ( ∃ 𝑖 ∈ { 𝑔 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑔 = ( 𝐴 +s 𝑞 ) } 𝑎 = ( 𝑖 +s 𝐶 ) ↔ ∃ 𝑖 ( ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑖 = ( 𝐴 +s 𝑞 ) ∧ 𝑎 = ( 𝑖 +s 𝐶 ) ) )
79 rexcom4 ( ∃ 𝑞 ∈ ( R ‘ 𝐵 ) ∃ 𝑖 ( 𝑖 = ( 𝐴 +s 𝑞 ) ∧ 𝑎 = ( 𝑖 +s 𝐶 ) ) ↔ ∃ 𝑖𝑞 ∈ ( R ‘ 𝐵 ) ( 𝑖 = ( 𝐴 +s 𝑞 ) ∧ 𝑎 = ( 𝑖 +s 𝐶 ) ) )
80 ovex ( 𝐴 +s 𝑞 ) ∈ V
81 oveq1 ( 𝑖 = ( 𝐴 +s 𝑞 ) → ( 𝑖 +s 𝐶 ) = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) )
82 81 eqeq2d ( 𝑖 = ( 𝐴 +s 𝑞 ) → ( 𝑎 = ( 𝑖 +s 𝐶 ) ↔ 𝑎 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) ) )
83 80 82 ceqsexv ( ∃ 𝑖 ( 𝑖 = ( 𝐴 +s 𝑞 ) ∧ 𝑎 = ( 𝑖 +s 𝐶 ) ) ↔ 𝑎 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) )
84 83 rexbii ( ∃ 𝑞 ∈ ( R ‘ 𝐵 ) ∃ 𝑖 ( 𝑖 = ( 𝐴 +s 𝑞 ) ∧ 𝑎 = ( 𝑖 +s 𝐶 ) ) ↔ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) )
85 r19.41v ( ∃ 𝑞 ∈ ( R ‘ 𝐵 ) ( 𝑖 = ( 𝐴 +s 𝑞 ) ∧ 𝑎 = ( 𝑖 +s 𝐶 ) ) ↔ ( ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑖 = ( 𝐴 +s 𝑞 ) ∧ 𝑎 = ( 𝑖 +s 𝐶 ) ) )
86 85 exbii ( ∃ 𝑖𝑞 ∈ ( R ‘ 𝐵 ) ( 𝑖 = ( 𝐴 +s 𝑞 ) ∧ 𝑎 = ( 𝑖 +s 𝐶 ) ) ↔ ∃ 𝑖 ( ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑖 = ( 𝐴 +s 𝑞 ) ∧ 𝑎 = ( 𝑖 +s 𝐶 ) ) )
87 79 84 86 3bitr3ri ( ∃ 𝑖 ( ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑖 = ( 𝐴 +s 𝑞 ) ∧ 𝑎 = ( 𝑖 +s 𝐶 ) ) ↔ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) )
88 78 87 bitri ( ∃ 𝑖 ∈ { 𝑔 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑔 = ( 𝐴 +s 𝑞 ) } 𝑎 = ( 𝑖 +s 𝐶 ) ↔ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) )
89 75 88 orbi12i ( ( ∃ 𝑖 ∈ { 𝑓 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑓 = ( 𝑝 +s 𝐵 ) } 𝑎 = ( 𝑖 +s 𝐶 ) ∨ ∃ 𝑖 ∈ { 𝑔 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑔 = ( 𝐴 +s 𝑞 ) } 𝑎 = ( 𝑖 +s 𝐶 ) ) ↔ ( ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑎 = ( ( 𝑝 +s 𝐵 ) +s 𝐶 ) ∨ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) ) )
90 62 89 bitri ( ∃ 𝑖 ∈ ( { 𝑓 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑓 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑔 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑔 = ( 𝐴 +s 𝑞 ) } ) 𝑎 = ( 𝑖 +s 𝐶 ) ↔ ( ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑎 = ( ( 𝑝 +s 𝐵 ) +s 𝐶 ) ∨ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) ) )
91 90 abbii { 𝑎 ∣ ∃ 𝑖 ∈ ( { 𝑓 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑓 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑔 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑔 = ( 𝐴 +s 𝑞 ) } ) 𝑎 = ( 𝑖 +s 𝐶 ) } = { 𝑎 ∣ ( ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑎 = ( ( 𝑝 +s 𝐵 ) +s 𝐶 ) ∨ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) ) }
92 57 61 91 3eqtr4ri { 𝑎 ∣ ∃ 𝑖 ∈ ( { 𝑓 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑓 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑔 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑔 = ( 𝐴 +s 𝑞 ) } ) 𝑎 = ( 𝑖 +s 𝐶 ) } = ( { 𝑎 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑎 = ( ( 𝑝 +s 𝐵 ) +s 𝐶 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) } )
93 92 uneq1i ( { 𝑎 ∣ ∃ 𝑖 ∈ ( { 𝑓 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑓 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑔 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑔 = ( 𝐴 +s 𝑞 ) } ) 𝑎 = ( 𝑖 +s 𝐶 ) } ∪ { 𝑐 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑐 = ( ( 𝐴 +s 𝐵 ) +s 𝑟 ) } ) = ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑎 = ( ( 𝑝 +s 𝐵 ) +s 𝐶 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) } ) ∪ { 𝑐 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑐 = ( ( 𝐴 +s 𝐵 ) +s 𝑟 ) } )
94 56 93 oveq12i ( ( { 𝑦 ∣ ∃ ∈ ( { 𝑑 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑑 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑒 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑒 = ( 𝐴 +s 𝑚 ) } ) 𝑦 = ( +s 𝐶 ) } ∪ { 𝑤 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑤 = ( ( 𝐴 +s 𝐵 ) +s 𝑛 ) } ) |s ( { 𝑎 ∣ ∃ 𝑖 ∈ ( { 𝑓 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑓 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑔 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑔 = ( 𝐴 +s 𝑞 ) } ) 𝑎 = ( 𝑖 +s 𝐶 ) } ∪ { 𝑐 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑐 = ( ( 𝐴 +s 𝐵 ) +s 𝑟 ) } ) ) = ( ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( ( 𝑙 +s 𝐵 ) +s 𝐶 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑧 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) } ) ∪ { 𝑤 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑤 = ( ( 𝐴 +s 𝐵 ) +s 𝑛 ) } ) |s ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑎 = ( ( 𝑝 +s 𝐵 ) +s 𝐶 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) } ) ∪ { 𝑐 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑐 = ( ( 𝐴 +s 𝐵 ) +s 𝑟 ) } ) )
95 19 94 eqtrdi ( 𝜑 → ( ( 𝐴 +s 𝐵 ) +s 𝐶 ) = ( ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( ( 𝑙 +s 𝐵 ) +s 𝐶 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑧 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) } ) ∪ { 𝑤 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑤 = ( ( 𝐴 +s 𝐵 ) +s 𝑛 ) } ) |s ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑎 = ( ( 𝑝 +s 𝐵 ) +s 𝐶 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) } ) ∪ { 𝑐 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑐 = ( ( 𝐴 +s 𝐵 ) +s 𝑟 ) } ) ) )