Step |
Hyp |
Ref |
Expression |
1 |
|
addsasslem.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
addsasslem.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
|
addsasslem.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
4 |
1 2
|
addscut |
⊢ ( 𝜑 → ( ( 𝐴 +s 𝐵 ) ∈ No ∧ ( { 𝑑 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑑 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑒 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑒 = ( 𝐴 +s 𝑚 ) } ) <<s { ( 𝐴 +s 𝐵 ) } ∧ { ( 𝐴 +s 𝐵 ) } <<s ( { 𝑓 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑓 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑔 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑔 = ( 𝐴 +s 𝑞 ) } ) ) ) |
5 |
4
|
simp2d |
⊢ ( 𝜑 → ( { 𝑑 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑑 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑒 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑒 = ( 𝐴 +s 𝑚 ) } ) <<s { ( 𝐴 +s 𝐵 ) } ) |
6 |
4
|
simp3d |
⊢ ( 𝜑 → { ( 𝐴 +s 𝐵 ) } <<s ( { 𝑓 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑓 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑔 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑔 = ( 𝐴 +s 𝑞 ) } ) ) |
7 |
|
ovex |
⊢ ( 𝐴 +s 𝐵 ) ∈ V |
8 |
7
|
snnz |
⊢ { ( 𝐴 +s 𝐵 ) } ≠ ∅ |
9 |
|
sslttr |
⊢ ( ( ( { 𝑑 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑑 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑒 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑒 = ( 𝐴 +s 𝑚 ) } ) <<s { ( 𝐴 +s 𝐵 ) } ∧ { ( 𝐴 +s 𝐵 ) } <<s ( { 𝑓 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑓 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑔 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑔 = ( 𝐴 +s 𝑞 ) } ) ∧ { ( 𝐴 +s 𝐵 ) } ≠ ∅ ) → ( { 𝑑 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑑 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑒 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑒 = ( 𝐴 +s 𝑚 ) } ) <<s ( { 𝑓 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑓 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑔 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑔 = ( 𝐴 +s 𝑞 ) } ) ) |
10 |
8 9
|
mp3an3 |
⊢ ( ( ( { 𝑑 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑑 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑒 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑒 = ( 𝐴 +s 𝑚 ) } ) <<s { ( 𝐴 +s 𝐵 ) } ∧ { ( 𝐴 +s 𝐵 ) } <<s ( { 𝑓 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑓 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑔 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑔 = ( 𝐴 +s 𝑞 ) } ) ) → ( { 𝑑 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑑 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑒 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑒 = ( 𝐴 +s 𝑚 ) } ) <<s ( { 𝑓 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑓 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑔 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑔 = ( 𝐴 +s 𝑞 ) } ) ) |
11 |
5 6 10
|
syl2anc |
⊢ ( 𝜑 → ( { 𝑑 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑑 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑒 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑒 = ( 𝐴 +s 𝑚 ) } ) <<s ( { 𝑓 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑓 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑔 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑔 = ( 𝐴 +s 𝑞 ) } ) ) |
12 |
|
lltropt |
⊢ ( L ‘ 𝐶 ) <<s ( R ‘ 𝐶 ) |
13 |
12
|
a1i |
⊢ ( 𝜑 → ( L ‘ 𝐶 ) <<s ( R ‘ 𝐶 ) ) |
14 |
|
addsval2 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 +s 𝐵 ) = ( ( { 𝑑 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑑 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑒 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑒 = ( 𝐴 +s 𝑚 ) } ) |s ( { 𝑓 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑓 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑔 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑔 = ( 𝐴 +s 𝑞 ) } ) ) ) |
15 |
1 2 14
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 +s 𝐵 ) = ( ( { 𝑑 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑑 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑒 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑒 = ( 𝐴 +s 𝑚 ) } ) |s ( { 𝑓 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑓 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑔 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑔 = ( 𝐴 +s 𝑞 ) } ) ) ) |
16 |
|
lrcut |
⊢ ( 𝐶 ∈ No → ( ( L ‘ 𝐶 ) |s ( R ‘ 𝐶 ) ) = 𝐶 ) |
17 |
3 16
|
syl |
⊢ ( 𝜑 → ( ( L ‘ 𝐶 ) |s ( R ‘ 𝐶 ) ) = 𝐶 ) |
18 |
17
|
eqcomd |
⊢ ( 𝜑 → 𝐶 = ( ( L ‘ 𝐶 ) |s ( R ‘ 𝐶 ) ) ) |
19 |
11 13 15 18
|
addsunif |
⊢ ( 𝜑 → ( ( 𝐴 +s 𝐵 ) +s 𝐶 ) = ( ( { 𝑦 ∣ ∃ ℎ ∈ ( { 𝑑 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑑 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑒 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑒 = ( 𝐴 +s 𝑚 ) } ) 𝑦 = ( ℎ +s 𝐶 ) } ∪ { 𝑤 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑤 = ( ( 𝐴 +s 𝐵 ) +s 𝑛 ) } ) |s ( { 𝑎 ∣ ∃ 𝑖 ∈ ( { 𝑓 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑓 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑔 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑔 = ( 𝐴 +s 𝑞 ) } ) 𝑎 = ( 𝑖 +s 𝐶 ) } ∪ { 𝑐 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑐 = ( ( 𝐴 +s 𝐵 ) +s 𝑟 ) } ) ) ) |
20 |
|
unab |
⊢ ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( ( 𝑙 +s 𝐵 ) +s 𝐶 ) } ∪ { 𝑦 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) } ) = { 𝑦 ∣ ( ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( ( 𝑙 +s 𝐵 ) +s 𝐶 ) ∨ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) ) } |
21 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) ↔ 𝑦 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) ) ) |
22 |
21
|
rexbidv |
⊢ ( 𝑧 = 𝑦 → ( ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑧 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) ↔ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) ) ) |
23 |
22
|
cbvabv |
⊢ { 𝑧 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑧 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) } = { 𝑦 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) } |
24 |
23
|
uneq2i |
⊢ ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( ( 𝑙 +s 𝐵 ) +s 𝐶 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑧 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) } ) = ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( ( 𝑙 +s 𝐵 ) +s 𝐶 ) } ∪ { 𝑦 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) } ) |
25 |
|
rexun |
⊢ ( ∃ ℎ ∈ ( { 𝑑 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑑 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑒 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑒 = ( 𝐴 +s 𝑚 ) } ) 𝑦 = ( ℎ +s 𝐶 ) ↔ ( ∃ ℎ ∈ { 𝑑 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑑 = ( 𝑙 +s 𝐵 ) } 𝑦 = ( ℎ +s 𝐶 ) ∨ ∃ ℎ ∈ { 𝑒 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑒 = ( 𝐴 +s 𝑚 ) } 𝑦 = ( ℎ +s 𝐶 ) ) ) |
26 |
|
eqeq1 |
⊢ ( 𝑑 = ℎ → ( 𝑑 = ( 𝑙 +s 𝐵 ) ↔ ℎ = ( 𝑙 +s 𝐵 ) ) ) |
27 |
26
|
rexbidv |
⊢ ( 𝑑 = ℎ → ( ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑑 = ( 𝑙 +s 𝐵 ) ↔ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ℎ = ( 𝑙 +s 𝐵 ) ) ) |
28 |
27
|
rexab |
⊢ ( ∃ ℎ ∈ { 𝑑 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑑 = ( 𝑙 +s 𝐵 ) } 𝑦 = ( ℎ +s 𝐶 ) ↔ ∃ ℎ ( ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ℎ = ( 𝑙 +s 𝐵 ) ∧ 𝑦 = ( ℎ +s 𝐶 ) ) ) |
29 |
|
rexcom4 |
⊢ ( ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ ℎ ( ℎ = ( 𝑙 +s 𝐵 ) ∧ 𝑦 = ( ℎ +s 𝐶 ) ) ↔ ∃ ℎ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ( ℎ = ( 𝑙 +s 𝐵 ) ∧ 𝑦 = ( ℎ +s 𝐶 ) ) ) |
30 |
|
ovex |
⊢ ( 𝑙 +s 𝐵 ) ∈ V |
31 |
|
oveq1 |
⊢ ( ℎ = ( 𝑙 +s 𝐵 ) → ( ℎ +s 𝐶 ) = ( ( 𝑙 +s 𝐵 ) +s 𝐶 ) ) |
32 |
31
|
eqeq2d |
⊢ ( ℎ = ( 𝑙 +s 𝐵 ) → ( 𝑦 = ( ℎ +s 𝐶 ) ↔ 𝑦 = ( ( 𝑙 +s 𝐵 ) +s 𝐶 ) ) ) |
33 |
30 32
|
ceqsexv |
⊢ ( ∃ ℎ ( ℎ = ( 𝑙 +s 𝐵 ) ∧ 𝑦 = ( ℎ +s 𝐶 ) ) ↔ 𝑦 = ( ( 𝑙 +s 𝐵 ) +s 𝐶 ) ) |
34 |
33
|
rexbii |
⊢ ( ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ ℎ ( ℎ = ( 𝑙 +s 𝐵 ) ∧ 𝑦 = ( ℎ +s 𝐶 ) ) ↔ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( ( 𝑙 +s 𝐵 ) +s 𝐶 ) ) |
35 |
|
r19.41v |
⊢ ( ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ( ℎ = ( 𝑙 +s 𝐵 ) ∧ 𝑦 = ( ℎ +s 𝐶 ) ) ↔ ( ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ℎ = ( 𝑙 +s 𝐵 ) ∧ 𝑦 = ( ℎ +s 𝐶 ) ) ) |
36 |
35
|
exbii |
⊢ ( ∃ ℎ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ( ℎ = ( 𝑙 +s 𝐵 ) ∧ 𝑦 = ( ℎ +s 𝐶 ) ) ↔ ∃ ℎ ( ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ℎ = ( 𝑙 +s 𝐵 ) ∧ 𝑦 = ( ℎ +s 𝐶 ) ) ) |
37 |
29 34 36
|
3bitr3ri |
⊢ ( ∃ ℎ ( ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ℎ = ( 𝑙 +s 𝐵 ) ∧ 𝑦 = ( ℎ +s 𝐶 ) ) ↔ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( ( 𝑙 +s 𝐵 ) +s 𝐶 ) ) |
38 |
28 37
|
bitri |
⊢ ( ∃ ℎ ∈ { 𝑑 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑑 = ( 𝑙 +s 𝐵 ) } 𝑦 = ( ℎ +s 𝐶 ) ↔ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( ( 𝑙 +s 𝐵 ) +s 𝐶 ) ) |
39 |
|
eqeq1 |
⊢ ( 𝑒 = ℎ → ( 𝑒 = ( 𝐴 +s 𝑚 ) ↔ ℎ = ( 𝐴 +s 𝑚 ) ) ) |
40 |
39
|
rexbidv |
⊢ ( 𝑒 = ℎ → ( ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑒 = ( 𝐴 +s 𝑚 ) ↔ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) ℎ = ( 𝐴 +s 𝑚 ) ) ) |
41 |
40
|
rexab |
⊢ ( ∃ ℎ ∈ { 𝑒 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑒 = ( 𝐴 +s 𝑚 ) } 𝑦 = ( ℎ +s 𝐶 ) ↔ ∃ ℎ ( ∃ 𝑚 ∈ ( L ‘ 𝐵 ) ℎ = ( 𝐴 +s 𝑚 ) ∧ 𝑦 = ( ℎ +s 𝐶 ) ) ) |
42 |
|
rexcom4 |
⊢ ( ∃ 𝑚 ∈ ( L ‘ 𝐵 ) ∃ ℎ ( ℎ = ( 𝐴 +s 𝑚 ) ∧ 𝑦 = ( ℎ +s 𝐶 ) ) ↔ ∃ ℎ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) ( ℎ = ( 𝐴 +s 𝑚 ) ∧ 𝑦 = ( ℎ +s 𝐶 ) ) ) |
43 |
|
ovex |
⊢ ( 𝐴 +s 𝑚 ) ∈ V |
44 |
|
oveq1 |
⊢ ( ℎ = ( 𝐴 +s 𝑚 ) → ( ℎ +s 𝐶 ) = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) ) |
45 |
44
|
eqeq2d |
⊢ ( ℎ = ( 𝐴 +s 𝑚 ) → ( 𝑦 = ( ℎ +s 𝐶 ) ↔ 𝑦 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) ) ) |
46 |
43 45
|
ceqsexv |
⊢ ( ∃ ℎ ( ℎ = ( 𝐴 +s 𝑚 ) ∧ 𝑦 = ( ℎ +s 𝐶 ) ) ↔ 𝑦 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) ) |
47 |
46
|
rexbii |
⊢ ( ∃ 𝑚 ∈ ( L ‘ 𝐵 ) ∃ ℎ ( ℎ = ( 𝐴 +s 𝑚 ) ∧ 𝑦 = ( ℎ +s 𝐶 ) ) ↔ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) ) |
48 |
|
r19.41v |
⊢ ( ∃ 𝑚 ∈ ( L ‘ 𝐵 ) ( ℎ = ( 𝐴 +s 𝑚 ) ∧ 𝑦 = ( ℎ +s 𝐶 ) ) ↔ ( ∃ 𝑚 ∈ ( L ‘ 𝐵 ) ℎ = ( 𝐴 +s 𝑚 ) ∧ 𝑦 = ( ℎ +s 𝐶 ) ) ) |
49 |
48
|
exbii |
⊢ ( ∃ ℎ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) ( ℎ = ( 𝐴 +s 𝑚 ) ∧ 𝑦 = ( ℎ +s 𝐶 ) ) ↔ ∃ ℎ ( ∃ 𝑚 ∈ ( L ‘ 𝐵 ) ℎ = ( 𝐴 +s 𝑚 ) ∧ 𝑦 = ( ℎ +s 𝐶 ) ) ) |
50 |
42 47 49
|
3bitr3ri |
⊢ ( ∃ ℎ ( ∃ 𝑚 ∈ ( L ‘ 𝐵 ) ℎ = ( 𝐴 +s 𝑚 ) ∧ 𝑦 = ( ℎ +s 𝐶 ) ) ↔ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) ) |
51 |
41 50
|
bitri |
⊢ ( ∃ ℎ ∈ { 𝑒 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑒 = ( 𝐴 +s 𝑚 ) } 𝑦 = ( ℎ +s 𝐶 ) ↔ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) ) |
52 |
38 51
|
orbi12i |
⊢ ( ( ∃ ℎ ∈ { 𝑑 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑑 = ( 𝑙 +s 𝐵 ) } 𝑦 = ( ℎ +s 𝐶 ) ∨ ∃ ℎ ∈ { 𝑒 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑒 = ( 𝐴 +s 𝑚 ) } 𝑦 = ( ℎ +s 𝐶 ) ) ↔ ( ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( ( 𝑙 +s 𝐵 ) +s 𝐶 ) ∨ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) ) ) |
53 |
25 52
|
bitri |
⊢ ( ∃ ℎ ∈ ( { 𝑑 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑑 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑒 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑒 = ( 𝐴 +s 𝑚 ) } ) 𝑦 = ( ℎ +s 𝐶 ) ↔ ( ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( ( 𝑙 +s 𝐵 ) +s 𝐶 ) ∨ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) ) ) |
54 |
53
|
abbii |
⊢ { 𝑦 ∣ ∃ ℎ ∈ ( { 𝑑 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑑 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑒 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑒 = ( 𝐴 +s 𝑚 ) } ) 𝑦 = ( ℎ +s 𝐶 ) } = { 𝑦 ∣ ( ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( ( 𝑙 +s 𝐵 ) +s 𝐶 ) ∨ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑦 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) ) } |
55 |
20 24 54
|
3eqtr4ri |
⊢ { 𝑦 ∣ ∃ ℎ ∈ ( { 𝑑 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑑 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑒 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑒 = ( 𝐴 +s 𝑚 ) } ) 𝑦 = ( ℎ +s 𝐶 ) } = ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( ( 𝑙 +s 𝐵 ) +s 𝐶 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑧 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) } ) |
56 |
55
|
uneq1i |
⊢ ( { 𝑦 ∣ ∃ ℎ ∈ ( { 𝑑 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑑 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑒 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑒 = ( 𝐴 +s 𝑚 ) } ) 𝑦 = ( ℎ +s 𝐶 ) } ∪ { 𝑤 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑤 = ( ( 𝐴 +s 𝐵 ) +s 𝑛 ) } ) = ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( ( 𝑙 +s 𝐵 ) +s 𝐶 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑧 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) } ) ∪ { 𝑤 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑤 = ( ( 𝐴 +s 𝐵 ) +s 𝑛 ) } ) |
57 |
|
unab |
⊢ ( { 𝑎 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑎 = ( ( 𝑝 +s 𝐵 ) +s 𝐶 ) } ∪ { 𝑎 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) } ) = { 𝑎 ∣ ( ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑎 = ( ( 𝑝 +s 𝐵 ) +s 𝐶 ) ∨ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) ) } |
58 |
|
eqeq1 |
⊢ ( 𝑏 = 𝑎 → ( 𝑏 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) ↔ 𝑎 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) ) ) |
59 |
58
|
rexbidv |
⊢ ( 𝑏 = 𝑎 → ( ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) ↔ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) ) ) |
60 |
59
|
cbvabv |
⊢ { 𝑏 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) } = { 𝑎 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) } |
61 |
60
|
uneq2i |
⊢ ( { 𝑎 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑎 = ( ( 𝑝 +s 𝐵 ) +s 𝐶 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) } ) = ( { 𝑎 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑎 = ( ( 𝑝 +s 𝐵 ) +s 𝐶 ) } ∪ { 𝑎 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) } ) |
62 |
|
rexun |
⊢ ( ∃ 𝑖 ∈ ( { 𝑓 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑓 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑔 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑔 = ( 𝐴 +s 𝑞 ) } ) 𝑎 = ( 𝑖 +s 𝐶 ) ↔ ( ∃ 𝑖 ∈ { 𝑓 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑓 = ( 𝑝 +s 𝐵 ) } 𝑎 = ( 𝑖 +s 𝐶 ) ∨ ∃ 𝑖 ∈ { 𝑔 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑔 = ( 𝐴 +s 𝑞 ) } 𝑎 = ( 𝑖 +s 𝐶 ) ) ) |
63 |
|
eqeq1 |
⊢ ( 𝑓 = 𝑖 → ( 𝑓 = ( 𝑝 +s 𝐵 ) ↔ 𝑖 = ( 𝑝 +s 𝐵 ) ) ) |
64 |
63
|
rexbidv |
⊢ ( 𝑓 = 𝑖 → ( ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑓 = ( 𝑝 +s 𝐵 ) ↔ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑖 = ( 𝑝 +s 𝐵 ) ) ) |
65 |
64
|
rexab |
⊢ ( ∃ 𝑖 ∈ { 𝑓 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑓 = ( 𝑝 +s 𝐵 ) } 𝑎 = ( 𝑖 +s 𝐶 ) ↔ ∃ 𝑖 ( ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑖 = ( 𝑝 +s 𝐵 ) ∧ 𝑎 = ( 𝑖 +s 𝐶 ) ) ) |
66 |
|
rexcom4 |
⊢ ( ∃ 𝑝 ∈ ( R ‘ 𝐴 ) ∃ 𝑖 ( 𝑖 = ( 𝑝 +s 𝐵 ) ∧ 𝑎 = ( 𝑖 +s 𝐶 ) ) ↔ ∃ 𝑖 ∃ 𝑝 ∈ ( R ‘ 𝐴 ) ( 𝑖 = ( 𝑝 +s 𝐵 ) ∧ 𝑎 = ( 𝑖 +s 𝐶 ) ) ) |
67 |
|
ovex |
⊢ ( 𝑝 +s 𝐵 ) ∈ V |
68 |
|
oveq1 |
⊢ ( 𝑖 = ( 𝑝 +s 𝐵 ) → ( 𝑖 +s 𝐶 ) = ( ( 𝑝 +s 𝐵 ) +s 𝐶 ) ) |
69 |
68
|
eqeq2d |
⊢ ( 𝑖 = ( 𝑝 +s 𝐵 ) → ( 𝑎 = ( 𝑖 +s 𝐶 ) ↔ 𝑎 = ( ( 𝑝 +s 𝐵 ) +s 𝐶 ) ) ) |
70 |
67 69
|
ceqsexv |
⊢ ( ∃ 𝑖 ( 𝑖 = ( 𝑝 +s 𝐵 ) ∧ 𝑎 = ( 𝑖 +s 𝐶 ) ) ↔ 𝑎 = ( ( 𝑝 +s 𝐵 ) +s 𝐶 ) ) |
71 |
70
|
rexbii |
⊢ ( ∃ 𝑝 ∈ ( R ‘ 𝐴 ) ∃ 𝑖 ( 𝑖 = ( 𝑝 +s 𝐵 ) ∧ 𝑎 = ( 𝑖 +s 𝐶 ) ) ↔ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑎 = ( ( 𝑝 +s 𝐵 ) +s 𝐶 ) ) |
72 |
|
r19.41v |
⊢ ( ∃ 𝑝 ∈ ( R ‘ 𝐴 ) ( 𝑖 = ( 𝑝 +s 𝐵 ) ∧ 𝑎 = ( 𝑖 +s 𝐶 ) ) ↔ ( ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑖 = ( 𝑝 +s 𝐵 ) ∧ 𝑎 = ( 𝑖 +s 𝐶 ) ) ) |
73 |
72
|
exbii |
⊢ ( ∃ 𝑖 ∃ 𝑝 ∈ ( R ‘ 𝐴 ) ( 𝑖 = ( 𝑝 +s 𝐵 ) ∧ 𝑎 = ( 𝑖 +s 𝐶 ) ) ↔ ∃ 𝑖 ( ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑖 = ( 𝑝 +s 𝐵 ) ∧ 𝑎 = ( 𝑖 +s 𝐶 ) ) ) |
74 |
66 71 73
|
3bitr3ri |
⊢ ( ∃ 𝑖 ( ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑖 = ( 𝑝 +s 𝐵 ) ∧ 𝑎 = ( 𝑖 +s 𝐶 ) ) ↔ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑎 = ( ( 𝑝 +s 𝐵 ) +s 𝐶 ) ) |
75 |
65 74
|
bitri |
⊢ ( ∃ 𝑖 ∈ { 𝑓 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑓 = ( 𝑝 +s 𝐵 ) } 𝑎 = ( 𝑖 +s 𝐶 ) ↔ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑎 = ( ( 𝑝 +s 𝐵 ) +s 𝐶 ) ) |
76 |
|
eqeq1 |
⊢ ( 𝑔 = 𝑖 → ( 𝑔 = ( 𝐴 +s 𝑞 ) ↔ 𝑖 = ( 𝐴 +s 𝑞 ) ) ) |
77 |
76
|
rexbidv |
⊢ ( 𝑔 = 𝑖 → ( ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑔 = ( 𝐴 +s 𝑞 ) ↔ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑖 = ( 𝐴 +s 𝑞 ) ) ) |
78 |
77
|
rexab |
⊢ ( ∃ 𝑖 ∈ { 𝑔 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑔 = ( 𝐴 +s 𝑞 ) } 𝑎 = ( 𝑖 +s 𝐶 ) ↔ ∃ 𝑖 ( ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑖 = ( 𝐴 +s 𝑞 ) ∧ 𝑎 = ( 𝑖 +s 𝐶 ) ) ) |
79 |
|
rexcom4 |
⊢ ( ∃ 𝑞 ∈ ( R ‘ 𝐵 ) ∃ 𝑖 ( 𝑖 = ( 𝐴 +s 𝑞 ) ∧ 𝑎 = ( 𝑖 +s 𝐶 ) ) ↔ ∃ 𝑖 ∃ 𝑞 ∈ ( R ‘ 𝐵 ) ( 𝑖 = ( 𝐴 +s 𝑞 ) ∧ 𝑎 = ( 𝑖 +s 𝐶 ) ) ) |
80 |
|
ovex |
⊢ ( 𝐴 +s 𝑞 ) ∈ V |
81 |
|
oveq1 |
⊢ ( 𝑖 = ( 𝐴 +s 𝑞 ) → ( 𝑖 +s 𝐶 ) = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) ) |
82 |
81
|
eqeq2d |
⊢ ( 𝑖 = ( 𝐴 +s 𝑞 ) → ( 𝑎 = ( 𝑖 +s 𝐶 ) ↔ 𝑎 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) ) ) |
83 |
80 82
|
ceqsexv |
⊢ ( ∃ 𝑖 ( 𝑖 = ( 𝐴 +s 𝑞 ) ∧ 𝑎 = ( 𝑖 +s 𝐶 ) ) ↔ 𝑎 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) ) |
84 |
83
|
rexbii |
⊢ ( ∃ 𝑞 ∈ ( R ‘ 𝐵 ) ∃ 𝑖 ( 𝑖 = ( 𝐴 +s 𝑞 ) ∧ 𝑎 = ( 𝑖 +s 𝐶 ) ) ↔ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) ) |
85 |
|
r19.41v |
⊢ ( ∃ 𝑞 ∈ ( R ‘ 𝐵 ) ( 𝑖 = ( 𝐴 +s 𝑞 ) ∧ 𝑎 = ( 𝑖 +s 𝐶 ) ) ↔ ( ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑖 = ( 𝐴 +s 𝑞 ) ∧ 𝑎 = ( 𝑖 +s 𝐶 ) ) ) |
86 |
85
|
exbii |
⊢ ( ∃ 𝑖 ∃ 𝑞 ∈ ( R ‘ 𝐵 ) ( 𝑖 = ( 𝐴 +s 𝑞 ) ∧ 𝑎 = ( 𝑖 +s 𝐶 ) ) ↔ ∃ 𝑖 ( ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑖 = ( 𝐴 +s 𝑞 ) ∧ 𝑎 = ( 𝑖 +s 𝐶 ) ) ) |
87 |
79 84 86
|
3bitr3ri |
⊢ ( ∃ 𝑖 ( ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑖 = ( 𝐴 +s 𝑞 ) ∧ 𝑎 = ( 𝑖 +s 𝐶 ) ) ↔ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) ) |
88 |
78 87
|
bitri |
⊢ ( ∃ 𝑖 ∈ { 𝑔 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑔 = ( 𝐴 +s 𝑞 ) } 𝑎 = ( 𝑖 +s 𝐶 ) ↔ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) ) |
89 |
75 88
|
orbi12i |
⊢ ( ( ∃ 𝑖 ∈ { 𝑓 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑓 = ( 𝑝 +s 𝐵 ) } 𝑎 = ( 𝑖 +s 𝐶 ) ∨ ∃ 𝑖 ∈ { 𝑔 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑔 = ( 𝐴 +s 𝑞 ) } 𝑎 = ( 𝑖 +s 𝐶 ) ) ↔ ( ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑎 = ( ( 𝑝 +s 𝐵 ) +s 𝐶 ) ∨ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) ) ) |
90 |
62 89
|
bitri |
⊢ ( ∃ 𝑖 ∈ ( { 𝑓 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑓 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑔 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑔 = ( 𝐴 +s 𝑞 ) } ) 𝑎 = ( 𝑖 +s 𝐶 ) ↔ ( ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑎 = ( ( 𝑝 +s 𝐵 ) +s 𝐶 ) ∨ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) ) ) |
91 |
90
|
abbii |
⊢ { 𝑎 ∣ ∃ 𝑖 ∈ ( { 𝑓 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑓 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑔 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑔 = ( 𝐴 +s 𝑞 ) } ) 𝑎 = ( 𝑖 +s 𝐶 ) } = { 𝑎 ∣ ( ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑎 = ( ( 𝑝 +s 𝐵 ) +s 𝐶 ) ∨ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) ) } |
92 |
57 61 91
|
3eqtr4ri |
⊢ { 𝑎 ∣ ∃ 𝑖 ∈ ( { 𝑓 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑓 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑔 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑔 = ( 𝐴 +s 𝑞 ) } ) 𝑎 = ( 𝑖 +s 𝐶 ) } = ( { 𝑎 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑎 = ( ( 𝑝 +s 𝐵 ) +s 𝐶 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) } ) |
93 |
92
|
uneq1i |
⊢ ( { 𝑎 ∣ ∃ 𝑖 ∈ ( { 𝑓 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑓 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑔 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑔 = ( 𝐴 +s 𝑞 ) } ) 𝑎 = ( 𝑖 +s 𝐶 ) } ∪ { 𝑐 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑐 = ( ( 𝐴 +s 𝐵 ) +s 𝑟 ) } ) = ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑎 = ( ( 𝑝 +s 𝐵 ) +s 𝐶 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) } ) ∪ { 𝑐 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑐 = ( ( 𝐴 +s 𝐵 ) +s 𝑟 ) } ) |
94 |
56 93
|
oveq12i |
⊢ ( ( { 𝑦 ∣ ∃ ℎ ∈ ( { 𝑑 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑑 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑒 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑒 = ( 𝐴 +s 𝑚 ) } ) 𝑦 = ( ℎ +s 𝐶 ) } ∪ { 𝑤 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑤 = ( ( 𝐴 +s 𝐵 ) +s 𝑛 ) } ) |s ( { 𝑎 ∣ ∃ 𝑖 ∈ ( { 𝑓 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑓 = ( 𝑝 +s 𝐵 ) } ∪ { 𝑔 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑔 = ( 𝐴 +s 𝑞 ) } ) 𝑎 = ( 𝑖 +s 𝐶 ) } ∪ { 𝑐 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑐 = ( ( 𝐴 +s 𝐵 ) +s 𝑟 ) } ) ) = ( ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( ( 𝑙 +s 𝐵 ) +s 𝐶 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑧 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) } ) ∪ { 𝑤 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑤 = ( ( 𝐴 +s 𝐵 ) +s 𝑛 ) } ) |s ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑎 = ( ( 𝑝 +s 𝐵 ) +s 𝐶 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) } ) ∪ { 𝑐 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑐 = ( ( 𝐴 +s 𝐵 ) +s 𝑟 ) } ) ) |
95 |
19 94
|
eqtrdi |
⊢ ( 𝜑 → ( ( 𝐴 +s 𝐵 ) +s 𝐶 ) = ( ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( ( 𝑙 +s 𝐵 ) +s 𝐶 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑧 = ( ( 𝐴 +s 𝑚 ) +s 𝐶 ) } ) ∪ { 𝑤 ∣ ∃ 𝑛 ∈ ( L ‘ 𝐶 ) 𝑤 = ( ( 𝐴 +s 𝐵 ) +s 𝑛 ) } ) |s ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( R ‘ 𝐴 ) 𝑎 = ( ( 𝑝 +s 𝐵 ) +s 𝐶 ) } ∪ { 𝑏 ∣ ∃ 𝑞 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( 𝐴 +s 𝑞 ) +s 𝐶 ) } ) ∪ { 𝑐 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐶 ) 𝑐 = ( ( 𝐴 +s 𝐵 ) +s 𝑟 ) } ) ) ) |