Step |
Hyp |
Ref |
Expression |
1 |
|
addsasslem.1 |
|- ( ph -> A e. No ) |
2 |
|
addsasslem.2 |
|- ( ph -> B e. No ) |
3 |
|
addsasslem.3 |
|- ( ph -> C e. No ) |
4 |
1 2
|
addscut |
|- ( ph -> ( ( A +s B ) e. No /\ ( { d | E. l e. ( _Left ` A ) d = ( l +s B ) } u. { e | E. m e. ( _Left ` B ) e = ( A +s m ) } ) < |
5 |
4
|
simp2d |
|- ( ph -> ( { d | E. l e. ( _Left ` A ) d = ( l +s B ) } u. { e | E. m e. ( _Left ` B ) e = ( A +s m ) } ) < |
6 |
4
|
simp3d |
|- ( ph -> { ( A +s B ) } < |
7 |
|
ovex |
|- ( A +s B ) e. _V |
8 |
7
|
snnz |
|- { ( A +s B ) } =/= (/) |
9 |
|
sslttr |
|- ( ( ( { d | E. l e. ( _Left ` A ) d = ( l +s B ) } u. { e | E. m e. ( _Left ` B ) e = ( A +s m ) } ) < ( { d | E. l e. ( _Left ` A ) d = ( l +s B ) } u. { e | E. m e. ( _Left ` B ) e = ( A +s m ) } ) < |
10 |
8 9
|
mp3an3 |
|- ( ( ( { d | E. l e. ( _Left ` A ) d = ( l +s B ) } u. { e | E. m e. ( _Left ` B ) e = ( A +s m ) } ) < ( { d | E. l e. ( _Left ` A ) d = ( l +s B ) } u. { e | E. m e. ( _Left ` B ) e = ( A +s m ) } ) < |
11 |
5 6 10
|
syl2anc |
|- ( ph -> ( { d | E. l e. ( _Left ` A ) d = ( l +s B ) } u. { e | E. m e. ( _Left ` B ) e = ( A +s m ) } ) < |
12 |
|
lltropt |
|- ( _Left ` C ) < |
13 |
12
|
a1i |
|- ( ph -> ( _Left ` C ) < |
14 |
|
addsval2 |
|- ( ( A e. No /\ B e. No ) -> ( A +s B ) = ( ( { d | E. l e. ( _Left ` A ) d = ( l +s B ) } u. { e | E. m e. ( _Left ` B ) e = ( A +s m ) } ) |s ( { f | E. p e. ( _Right ` A ) f = ( p +s B ) } u. { g | E. q e. ( _Right ` B ) g = ( A +s q ) } ) ) ) |
15 |
1 2 14
|
syl2anc |
|- ( ph -> ( A +s B ) = ( ( { d | E. l e. ( _Left ` A ) d = ( l +s B ) } u. { e | E. m e. ( _Left ` B ) e = ( A +s m ) } ) |s ( { f | E. p e. ( _Right ` A ) f = ( p +s B ) } u. { g | E. q e. ( _Right ` B ) g = ( A +s q ) } ) ) ) |
16 |
|
lrcut |
|- ( C e. No -> ( ( _Left ` C ) |s ( _Right ` C ) ) = C ) |
17 |
3 16
|
syl |
|- ( ph -> ( ( _Left ` C ) |s ( _Right ` C ) ) = C ) |
18 |
17
|
eqcomd |
|- ( ph -> C = ( ( _Left ` C ) |s ( _Right ` C ) ) ) |
19 |
11 13 15 18
|
addsunif |
|- ( ph -> ( ( A +s B ) +s C ) = ( ( { y | E. h e. ( { d | E. l e. ( _Left ` A ) d = ( l +s B ) } u. { e | E. m e. ( _Left ` B ) e = ( A +s m ) } ) y = ( h +s C ) } u. { w | E. n e. ( _Left ` C ) w = ( ( A +s B ) +s n ) } ) |s ( { a | E. i e. ( { f | E. p e. ( _Right ` A ) f = ( p +s B ) } u. { g | E. q e. ( _Right ` B ) g = ( A +s q ) } ) a = ( i +s C ) } u. { c | E. r e. ( _Right ` C ) c = ( ( A +s B ) +s r ) } ) ) ) |
20 |
|
unab |
|- ( { y | E. l e. ( _Left ` A ) y = ( ( l +s B ) +s C ) } u. { y | E. m e. ( _Left ` B ) y = ( ( A +s m ) +s C ) } ) = { y | ( E. l e. ( _Left ` A ) y = ( ( l +s B ) +s C ) \/ E. m e. ( _Left ` B ) y = ( ( A +s m ) +s C ) ) } |
21 |
|
eqeq1 |
|- ( z = y -> ( z = ( ( A +s m ) +s C ) <-> y = ( ( A +s m ) +s C ) ) ) |
22 |
21
|
rexbidv |
|- ( z = y -> ( E. m e. ( _Left ` B ) z = ( ( A +s m ) +s C ) <-> E. m e. ( _Left ` B ) y = ( ( A +s m ) +s C ) ) ) |
23 |
22
|
cbvabv |
|- { z | E. m e. ( _Left ` B ) z = ( ( A +s m ) +s C ) } = { y | E. m e. ( _Left ` B ) y = ( ( A +s m ) +s C ) } |
24 |
23
|
uneq2i |
|- ( { y | E. l e. ( _Left ` A ) y = ( ( l +s B ) +s C ) } u. { z | E. m e. ( _Left ` B ) z = ( ( A +s m ) +s C ) } ) = ( { y | E. l e. ( _Left ` A ) y = ( ( l +s B ) +s C ) } u. { y | E. m e. ( _Left ` B ) y = ( ( A +s m ) +s C ) } ) |
25 |
|
rexun |
|- ( E. h e. ( { d | E. l e. ( _Left ` A ) d = ( l +s B ) } u. { e | E. m e. ( _Left ` B ) e = ( A +s m ) } ) y = ( h +s C ) <-> ( E. h e. { d | E. l e. ( _Left ` A ) d = ( l +s B ) } y = ( h +s C ) \/ E. h e. { e | E. m e. ( _Left ` B ) e = ( A +s m ) } y = ( h +s C ) ) ) |
26 |
|
eqeq1 |
|- ( d = h -> ( d = ( l +s B ) <-> h = ( l +s B ) ) ) |
27 |
26
|
rexbidv |
|- ( d = h -> ( E. l e. ( _Left ` A ) d = ( l +s B ) <-> E. l e. ( _Left ` A ) h = ( l +s B ) ) ) |
28 |
27
|
rexab |
|- ( E. h e. { d | E. l e. ( _Left ` A ) d = ( l +s B ) } y = ( h +s C ) <-> E. h ( E. l e. ( _Left ` A ) h = ( l +s B ) /\ y = ( h +s C ) ) ) |
29 |
|
rexcom4 |
|- ( E. l e. ( _Left ` A ) E. h ( h = ( l +s B ) /\ y = ( h +s C ) ) <-> E. h E. l e. ( _Left ` A ) ( h = ( l +s B ) /\ y = ( h +s C ) ) ) |
30 |
|
ovex |
|- ( l +s B ) e. _V |
31 |
|
oveq1 |
|- ( h = ( l +s B ) -> ( h +s C ) = ( ( l +s B ) +s C ) ) |
32 |
31
|
eqeq2d |
|- ( h = ( l +s B ) -> ( y = ( h +s C ) <-> y = ( ( l +s B ) +s C ) ) ) |
33 |
30 32
|
ceqsexv |
|- ( E. h ( h = ( l +s B ) /\ y = ( h +s C ) ) <-> y = ( ( l +s B ) +s C ) ) |
34 |
33
|
rexbii |
|- ( E. l e. ( _Left ` A ) E. h ( h = ( l +s B ) /\ y = ( h +s C ) ) <-> E. l e. ( _Left ` A ) y = ( ( l +s B ) +s C ) ) |
35 |
|
r19.41v |
|- ( E. l e. ( _Left ` A ) ( h = ( l +s B ) /\ y = ( h +s C ) ) <-> ( E. l e. ( _Left ` A ) h = ( l +s B ) /\ y = ( h +s C ) ) ) |
36 |
35
|
exbii |
|- ( E. h E. l e. ( _Left ` A ) ( h = ( l +s B ) /\ y = ( h +s C ) ) <-> E. h ( E. l e. ( _Left ` A ) h = ( l +s B ) /\ y = ( h +s C ) ) ) |
37 |
29 34 36
|
3bitr3ri |
|- ( E. h ( E. l e. ( _Left ` A ) h = ( l +s B ) /\ y = ( h +s C ) ) <-> E. l e. ( _Left ` A ) y = ( ( l +s B ) +s C ) ) |
38 |
28 37
|
bitri |
|- ( E. h e. { d | E. l e. ( _Left ` A ) d = ( l +s B ) } y = ( h +s C ) <-> E. l e. ( _Left ` A ) y = ( ( l +s B ) +s C ) ) |
39 |
|
eqeq1 |
|- ( e = h -> ( e = ( A +s m ) <-> h = ( A +s m ) ) ) |
40 |
39
|
rexbidv |
|- ( e = h -> ( E. m e. ( _Left ` B ) e = ( A +s m ) <-> E. m e. ( _Left ` B ) h = ( A +s m ) ) ) |
41 |
40
|
rexab |
|- ( E. h e. { e | E. m e. ( _Left ` B ) e = ( A +s m ) } y = ( h +s C ) <-> E. h ( E. m e. ( _Left ` B ) h = ( A +s m ) /\ y = ( h +s C ) ) ) |
42 |
|
rexcom4 |
|- ( E. m e. ( _Left ` B ) E. h ( h = ( A +s m ) /\ y = ( h +s C ) ) <-> E. h E. m e. ( _Left ` B ) ( h = ( A +s m ) /\ y = ( h +s C ) ) ) |
43 |
|
ovex |
|- ( A +s m ) e. _V |
44 |
|
oveq1 |
|- ( h = ( A +s m ) -> ( h +s C ) = ( ( A +s m ) +s C ) ) |
45 |
44
|
eqeq2d |
|- ( h = ( A +s m ) -> ( y = ( h +s C ) <-> y = ( ( A +s m ) +s C ) ) ) |
46 |
43 45
|
ceqsexv |
|- ( E. h ( h = ( A +s m ) /\ y = ( h +s C ) ) <-> y = ( ( A +s m ) +s C ) ) |
47 |
46
|
rexbii |
|- ( E. m e. ( _Left ` B ) E. h ( h = ( A +s m ) /\ y = ( h +s C ) ) <-> E. m e. ( _Left ` B ) y = ( ( A +s m ) +s C ) ) |
48 |
|
r19.41v |
|- ( E. m e. ( _Left ` B ) ( h = ( A +s m ) /\ y = ( h +s C ) ) <-> ( E. m e. ( _Left ` B ) h = ( A +s m ) /\ y = ( h +s C ) ) ) |
49 |
48
|
exbii |
|- ( E. h E. m e. ( _Left ` B ) ( h = ( A +s m ) /\ y = ( h +s C ) ) <-> E. h ( E. m e. ( _Left ` B ) h = ( A +s m ) /\ y = ( h +s C ) ) ) |
50 |
42 47 49
|
3bitr3ri |
|- ( E. h ( E. m e. ( _Left ` B ) h = ( A +s m ) /\ y = ( h +s C ) ) <-> E. m e. ( _Left ` B ) y = ( ( A +s m ) +s C ) ) |
51 |
41 50
|
bitri |
|- ( E. h e. { e | E. m e. ( _Left ` B ) e = ( A +s m ) } y = ( h +s C ) <-> E. m e. ( _Left ` B ) y = ( ( A +s m ) +s C ) ) |
52 |
38 51
|
orbi12i |
|- ( ( E. h e. { d | E. l e. ( _Left ` A ) d = ( l +s B ) } y = ( h +s C ) \/ E. h e. { e | E. m e. ( _Left ` B ) e = ( A +s m ) } y = ( h +s C ) ) <-> ( E. l e. ( _Left ` A ) y = ( ( l +s B ) +s C ) \/ E. m e. ( _Left ` B ) y = ( ( A +s m ) +s C ) ) ) |
53 |
25 52
|
bitri |
|- ( E. h e. ( { d | E. l e. ( _Left ` A ) d = ( l +s B ) } u. { e | E. m e. ( _Left ` B ) e = ( A +s m ) } ) y = ( h +s C ) <-> ( E. l e. ( _Left ` A ) y = ( ( l +s B ) +s C ) \/ E. m e. ( _Left ` B ) y = ( ( A +s m ) +s C ) ) ) |
54 |
53
|
abbii |
|- { y | E. h e. ( { d | E. l e. ( _Left ` A ) d = ( l +s B ) } u. { e | E. m e. ( _Left ` B ) e = ( A +s m ) } ) y = ( h +s C ) } = { y | ( E. l e. ( _Left ` A ) y = ( ( l +s B ) +s C ) \/ E. m e. ( _Left ` B ) y = ( ( A +s m ) +s C ) ) } |
55 |
20 24 54
|
3eqtr4ri |
|- { y | E. h e. ( { d | E. l e. ( _Left ` A ) d = ( l +s B ) } u. { e | E. m e. ( _Left ` B ) e = ( A +s m ) } ) y = ( h +s C ) } = ( { y | E. l e. ( _Left ` A ) y = ( ( l +s B ) +s C ) } u. { z | E. m e. ( _Left ` B ) z = ( ( A +s m ) +s C ) } ) |
56 |
55
|
uneq1i |
|- ( { y | E. h e. ( { d | E. l e. ( _Left ` A ) d = ( l +s B ) } u. { e | E. m e. ( _Left ` B ) e = ( A +s m ) } ) y = ( h +s C ) } u. { w | E. n e. ( _Left ` C ) w = ( ( A +s B ) +s n ) } ) = ( ( { y | E. l e. ( _Left ` A ) y = ( ( l +s B ) +s C ) } u. { z | E. m e. ( _Left ` B ) z = ( ( A +s m ) +s C ) } ) u. { w | E. n e. ( _Left ` C ) w = ( ( A +s B ) +s n ) } ) |
57 |
|
unab |
|- ( { a | E. p e. ( _Right ` A ) a = ( ( p +s B ) +s C ) } u. { a | E. q e. ( _Right ` B ) a = ( ( A +s q ) +s C ) } ) = { a | ( E. p e. ( _Right ` A ) a = ( ( p +s B ) +s C ) \/ E. q e. ( _Right ` B ) a = ( ( A +s q ) +s C ) ) } |
58 |
|
eqeq1 |
|- ( b = a -> ( b = ( ( A +s q ) +s C ) <-> a = ( ( A +s q ) +s C ) ) ) |
59 |
58
|
rexbidv |
|- ( b = a -> ( E. q e. ( _Right ` B ) b = ( ( A +s q ) +s C ) <-> E. q e. ( _Right ` B ) a = ( ( A +s q ) +s C ) ) ) |
60 |
59
|
cbvabv |
|- { b | E. q e. ( _Right ` B ) b = ( ( A +s q ) +s C ) } = { a | E. q e. ( _Right ` B ) a = ( ( A +s q ) +s C ) } |
61 |
60
|
uneq2i |
|- ( { a | E. p e. ( _Right ` A ) a = ( ( p +s B ) +s C ) } u. { b | E. q e. ( _Right ` B ) b = ( ( A +s q ) +s C ) } ) = ( { a | E. p e. ( _Right ` A ) a = ( ( p +s B ) +s C ) } u. { a | E. q e. ( _Right ` B ) a = ( ( A +s q ) +s C ) } ) |
62 |
|
rexun |
|- ( E. i e. ( { f | E. p e. ( _Right ` A ) f = ( p +s B ) } u. { g | E. q e. ( _Right ` B ) g = ( A +s q ) } ) a = ( i +s C ) <-> ( E. i e. { f | E. p e. ( _Right ` A ) f = ( p +s B ) } a = ( i +s C ) \/ E. i e. { g | E. q e. ( _Right ` B ) g = ( A +s q ) } a = ( i +s C ) ) ) |
63 |
|
eqeq1 |
|- ( f = i -> ( f = ( p +s B ) <-> i = ( p +s B ) ) ) |
64 |
63
|
rexbidv |
|- ( f = i -> ( E. p e. ( _Right ` A ) f = ( p +s B ) <-> E. p e. ( _Right ` A ) i = ( p +s B ) ) ) |
65 |
64
|
rexab |
|- ( E. i e. { f | E. p e. ( _Right ` A ) f = ( p +s B ) } a = ( i +s C ) <-> E. i ( E. p e. ( _Right ` A ) i = ( p +s B ) /\ a = ( i +s C ) ) ) |
66 |
|
rexcom4 |
|- ( E. p e. ( _Right ` A ) E. i ( i = ( p +s B ) /\ a = ( i +s C ) ) <-> E. i E. p e. ( _Right ` A ) ( i = ( p +s B ) /\ a = ( i +s C ) ) ) |
67 |
|
ovex |
|- ( p +s B ) e. _V |
68 |
|
oveq1 |
|- ( i = ( p +s B ) -> ( i +s C ) = ( ( p +s B ) +s C ) ) |
69 |
68
|
eqeq2d |
|- ( i = ( p +s B ) -> ( a = ( i +s C ) <-> a = ( ( p +s B ) +s C ) ) ) |
70 |
67 69
|
ceqsexv |
|- ( E. i ( i = ( p +s B ) /\ a = ( i +s C ) ) <-> a = ( ( p +s B ) +s C ) ) |
71 |
70
|
rexbii |
|- ( E. p e. ( _Right ` A ) E. i ( i = ( p +s B ) /\ a = ( i +s C ) ) <-> E. p e. ( _Right ` A ) a = ( ( p +s B ) +s C ) ) |
72 |
|
r19.41v |
|- ( E. p e. ( _Right ` A ) ( i = ( p +s B ) /\ a = ( i +s C ) ) <-> ( E. p e. ( _Right ` A ) i = ( p +s B ) /\ a = ( i +s C ) ) ) |
73 |
72
|
exbii |
|- ( E. i E. p e. ( _Right ` A ) ( i = ( p +s B ) /\ a = ( i +s C ) ) <-> E. i ( E. p e. ( _Right ` A ) i = ( p +s B ) /\ a = ( i +s C ) ) ) |
74 |
66 71 73
|
3bitr3ri |
|- ( E. i ( E. p e. ( _Right ` A ) i = ( p +s B ) /\ a = ( i +s C ) ) <-> E. p e. ( _Right ` A ) a = ( ( p +s B ) +s C ) ) |
75 |
65 74
|
bitri |
|- ( E. i e. { f | E. p e. ( _Right ` A ) f = ( p +s B ) } a = ( i +s C ) <-> E. p e. ( _Right ` A ) a = ( ( p +s B ) +s C ) ) |
76 |
|
eqeq1 |
|- ( g = i -> ( g = ( A +s q ) <-> i = ( A +s q ) ) ) |
77 |
76
|
rexbidv |
|- ( g = i -> ( E. q e. ( _Right ` B ) g = ( A +s q ) <-> E. q e. ( _Right ` B ) i = ( A +s q ) ) ) |
78 |
77
|
rexab |
|- ( E. i e. { g | E. q e. ( _Right ` B ) g = ( A +s q ) } a = ( i +s C ) <-> E. i ( E. q e. ( _Right ` B ) i = ( A +s q ) /\ a = ( i +s C ) ) ) |
79 |
|
rexcom4 |
|- ( E. q e. ( _Right ` B ) E. i ( i = ( A +s q ) /\ a = ( i +s C ) ) <-> E. i E. q e. ( _Right ` B ) ( i = ( A +s q ) /\ a = ( i +s C ) ) ) |
80 |
|
ovex |
|- ( A +s q ) e. _V |
81 |
|
oveq1 |
|- ( i = ( A +s q ) -> ( i +s C ) = ( ( A +s q ) +s C ) ) |
82 |
81
|
eqeq2d |
|- ( i = ( A +s q ) -> ( a = ( i +s C ) <-> a = ( ( A +s q ) +s C ) ) ) |
83 |
80 82
|
ceqsexv |
|- ( E. i ( i = ( A +s q ) /\ a = ( i +s C ) ) <-> a = ( ( A +s q ) +s C ) ) |
84 |
83
|
rexbii |
|- ( E. q e. ( _Right ` B ) E. i ( i = ( A +s q ) /\ a = ( i +s C ) ) <-> E. q e. ( _Right ` B ) a = ( ( A +s q ) +s C ) ) |
85 |
|
r19.41v |
|- ( E. q e. ( _Right ` B ) ( i = ( A +s q ) /\ a = ( i +s C ) ) <-> ( E. q e. ( _Right ` B ) i = ( A +s q ) /\ a = ( i +s C ) ) ) |
86 |
85
|
exbii |
|- ( E. i E. q e. ( _Right ` B ) ( i = ( A +s q ) /\ a = ( i +s C ) ) <-> E. i ( E. q e. ( _Right ` B ) i = ( A +s q ) /\ a = ( i +s C ) ) ) |
87 |
79 84 86
|
3bitr3ri |
|- ( E. i ( E. q e. ( _Right ` B ) i = ( A +s q ) /\ a = ( i +s C ) ) <-> E. q e. ( _Right ` B ) a = ( ( A +s q ) +s C ) ) |
88 |
78 87
|
bitri |
|- ( E. i e. { g | E. q e. ( _Right ` B ) g = ( A +s q ) } a = ( i +s C ) <-> E. q e. ( _Right ` B ) a = ( ( A +s q ) +s C ) ) |
89 |
75 88
|
orbi12i |
|- ( ( E. i e. { f | E. p e. ( _Right ` A ) f = ( p +s B ) } a = ( i +s C ) \/ E. i e. { g | E. q e. ( _Right ` B ) g = ( A +s q ) } a = ( i +s C ) ) <-> ( E. p e. ( _Right ` A ) a = ( ( p +s B ) +s C ) \/ E. q e. ( _Right ` B ) a = ( ( A +s q ) +s C ) ) ) |
90 |
62 89
|
bitri |
|- ( E. i e. ( { f | E. p e. ( _Right ` A ) f = ( p +s B ) } u. { g | E. q e. ( _Right ` B ) g = ( A +s q ) } ) a = ( i +s C ) <-> ( E. p e. ( _Right ` A ) a = ( ( p +s B ) +s C ) \/ E. q e. ( _Right ` B ) a = ( ( A +s q ) +s C ) ) ) |
91 |
90
|
abbii |
|- { a | E. i e. ( { f | E. p e. ( _Right ` A ) f = ( p +s B ) } u. { g | E. q e. ( _Right ` B ) g = ( A +s q ) } ) a = ( i +s C ) } = { a | ( E. p e. ( _Right ` A ) a = ( ( p +s B ) +s C ) \/ E. q e. ( _Right ` B ) a = ( ( A +s q ) +s C ) ) } |
92 |
57 61 91
|
3eqtr4ri |
|- { a | E. i e. ( { f | E. p e. ( _Right ` A ) f = ( p +s B ) } u. { g | E. q e. ( _Right ` B ) g = ( A +s q ) } ) a = ( i +s C ) } = ( { a | E. p e. ( _Right ` A ) a = ( ( p +s B ) +s C ) } u. { b | E. q e. ( _Right ` B ) b = ( ( A +s q ) +s C ) } ) |
93 |
92
|
uneq1i |
|- ( { a | E. i e. ( { f | E. p e. ( _Right ` A ) f = ( p +s B ) } u. { g | E. q e. ( _Right ` B ) g = ( A +s q ) } ) a = ( i +s C ) } u. { c | E. r e. ( _Right ` C ) c = ( ( A +s B ) +s r ) } ) = ( ( { a | E. p e. ( _Right ` A ) a = ( ( p +s B ) +s C ) } u. { b | E. q e. ( _Right ` B ) b = ( ( A +s q ) +s C ) } ) u. { c | E. r e. ( _Right ` C ) c = ( ( A +s B ) +s r ) } ) |
94 |
56 93
|
oveq12i |
|- ( ( { y | E. h e. ( { d | E. l e. ( _Left ` A ) d = ( l +s B ) } u. { e | E. m e. ( _Left ` B ) e = ( A +s m ) } ) y = ( h +s C ) } u. { w | E. n e. ( _Left ` C ) w = ( ( A +s B ) +s n ) } ) |s ( { a | E. i e. ( { f | E. p e. ( _Right ` A ) f = ( p +s B ) } u. { g | E. q e. ( _Right ` B ) g = ( A +s q ) } ) a = ( i +s C ) } u. { c | E. r e. ( _Right ` C ) c = ( ( A +s B ) +s r ) } ) ) = ( ( ( { y | E. l e. ( _Left ` A ) y = ( ( l +s B ) +s C ) } u. { z | E. m e. ( _Left ` B ) z = ( ( A +s m ) +s C ) } ) u. { w | E. n e. ( _Left ` C ) w = ( ( A +s B ) +s n ) } ) |s ( ( { a | E. p e. ( _Right ` A ) a = ( ( p +s B ) +s C ) } u. { b | E. q e. ( _Right ` B ) b = ( ( A +s q ) +s C ) } ) u. { c | E. r e. ( _Right ` C ) c = ( ( A +s B ) +s r ) } ) ) |
95 |
19 94
|
eqtrdi |
|- ( ph -> ( ( A +s B ) +s C ) = ( ( ( { y | E. l e. ( _Left ` A ) y = ( ( l +s B ) +s C ) } u. { z | E. m e. ( _Left ` B ) z = ( ( A +s m ) +s C ) } ) u. { w | E. n e. ( _Left ` C ) w = ( ( A +s B ) +s n ) } ) |s ( ( { a | E. p e. ( _Right ` A ) a = ( ( p +s B ) +s C ) } u. { b | E. q e. ( _Right ` B ) b = ( ( A +s q ) +s C ) } ) u. { c | E. r e. ( _Right ` C ) c = ( ( A +s B ) +s r ) } ) ) ) |