Step |
Hyp |
Ref |
Expression |
1 |
|
nnsno |
⊢ ( 𝑛 ∈ ℕs → 𝑛 ∈ No ) |
2 |
1
|
adantr |
⊢ ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) → 𝑛 ∈ No ) |
3 |
|
nnsno |
⊢ ( 𝑚 ∈ ℕs → 𝑚 ∈ No ) |
4 |
3
|
adantl |
⊢ ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) → 𝑚 ∈ No ) |
5 |
2 4
|
negsubsdi2d |
⊢ ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) → ( -us ‘ ( 𝑛 -s 𝑚 ) ) = ( 𝑚 -s 𝑛 ) ) |
6 |
|
fveqeq2 |
⊢ ( 𝐴 = ( 𝑛 -s 𝑚 ) → ( ( -us ‘ 𝐴 ) = ( 𝑚 -s 𝑛 ) ↔ ( -us ‘ ( 𝑛 -s 𝑚 ) ) = ( 𝑚 -s 𝑛 ) ) ) |
7 |
5 6
|
syl5ibrcom |
⊢ ( ( 𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs ) → ( 𝐴 = ( 𝑛 -s 𝑚 ) → ( -us ‘ 𝐴 ) = ( 𝑚 -s 𝑛 ) ) ) |
8 |
7
|
reximdva |
⊢ ( 𝑛 ∈ ℕs → ( ∃ 𝑚 ∈ ℕs 𝐴 = ( 𝑛 -s 𝑚 ) → ∃ 𝑚 ∈ ℕs ( -us ‘ 𝐴 ) = ( 𝑚 -s 𝑛 ) ) ) |
9 |
8
|
reximia |
⊢ ( ∃ 𝑛 ∈ ℕs ∃ 𝑚 ∈ ℕs 𝐴 = ( 𝑛 -s 𝑚 ) → ∃ 𝑛 ∈ ℕs ∃ 𝑚 ∈ ℕs ( -us ‘ 𝐴 ) = ( 𝑚 -s 𝑛 ) ) |
10 |
|
elzs |
⊢ ( 𝐴 ∈ ℤs ↔ ∃ 𝑛 ∈ ℕs ∃ 𝑚 ∈ ℕs 𝐴 = ( 𝑛 -s 𝑚 ) ) |
11 |
|
elzs |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℤs ↔ ∃ 𝑚 ∈ ℕs ∃ 𝑛 ∈ ℕs ( -us ‘ 𝐴 ) = ( 𝑚 -s 𝑛 ) ) |
12 |
|
rexcom |
⊢ ( ∃ 𝑚 ∈ ℕs ∃ 𝑛 ∈ ℕs ( -us ‘ 𝐴 ) = ( 𝑚 -s 𝑛 ) ↔ ∃ 𝑛 ∈ ℕs ∃ 𝑚 ∈ ℕs ( -us ‘ 𝐴 ) = ( 𝑚 -s 𝑛 ) ) |
13 |
11 12
|
bitri |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℤs ↔ ∃ 𝑛 ∈ ℕs ∃ 𝑚 ∈ ℕs ( -us ‘ 𝐴 ) = ( 𝑚 -s 𝑛 ) ) |
14 |
9 10 13
|
3imtr4i |
⊢ ( 𝐴 ∈ ℤs → ( -us ‘ 𝐴 ) ∈ ℤs ) |