Metamath Proof Explorer


Theorem znegscl

Description: The surreal integers are closed under negation. (Contributed by Scott Fenton, 26-May-2025)

Ref Expression
Assertion znegscl ( 𝐴 ∈ ℤs → ( -us𝐴 ) ∈ ℤs )

Proof

Step Hyp Ref Expression
1 nnsno ( 𝑛 ∈ ℕs𝑛 No )
2 1 adantr ( ( 𝑛 ∈ ℕs𝑚 ∈ ℕs ) → 𝑛 No )
3 nnsno ( 𝑚 ∈ ℕs𝑚 No )
4 3 adantl ( ( 𝑛 ∈ ℕs𝑚 ∈ ℕs ) → 𝑚 No )
5 2 4 negsubsdi2d ( ( 𝑛 ∈ ℕs𝑚 ∈ ℕs ) → ( -us ‘ ( 𝑛 -s 𝑚 ) ) = ( 𝑚 -s 𝑛 ) )
6 fveqeq2 ( 𝐴 = ( 𝑛 -s 𝑚 ) → ( ( -us𝐴 ) = ( 𝑚 -s 𝑛 ) ↔ ( -us ‘ ( 𝑛 -s 𝑚 ) ) = ( 𝑚 -s 𝑛 ) ) )
7 5 6 syl5ibrcom ( ( 𝑛 ∈ ℕs𝑚 ∈ ℕs ) → ( 𝐴 = ( 𝑛 -s 𝑚 ) → ( -us𝐴 ) = ( 𝑚 -s 𝑛 ) ) )
8 7 reximdva ( 𝑛 ∈ ℕs → ( ∃ 𝑚 ∈ ℕs 𝐴 = ( 𝑛 -s 𝑚 ) → ∃ 𝑚 ∈ ℕs ( -us𝐴 ) = ( 𝑚 -s 𝑛 ) ) )
9 8 reximia ( ∃ 𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = ( 𝑛 -s 𝑚 ) → ∃ 𝑛 ∈ ℕs𝑚 ∈ ℕs ( -us𝐴 ) = ( 𝑚 -s 𝑛 ) )
10 elzs ( 𝐴 ∈ ℤs ↔ ∃ 𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = ( 𝑛 -s 𝑚 ) )
11 elzs ( ( -us𝐴 ) ∈ ℤs ↔ ∃ 𝑚 ∈ ℕs𝑛 ∈ ℕs ( -us𝐴 ) = ( 𝑚 -s 𝑛 ) )
12 rexcom ( ∃ 𝑚 ∈ ℕs𝑛 ∈ ℕs ( -us𝐴 ) = ( 𝑚 -s 𝑛 ) ↔ ∃ 𝑛 ∈ ℕs𝑚 ∈ ℕs ( -us𝐴 ) = ( 𝑚 -s 𝑛 ) )
13 11 12 bitri ( ( -us𝐴 ) ∈ ℤs ↔ ∃ 𝑛 ∈ ℕs𝑚 ∈ ℕs ( -us𝐴 ) = ( 𝑚 -s 𝑛 ) )
14 9 10 13 3imtr4i ( 𝐴 ∈ ℤs → ( -us𝐴 ) ∈ ℤs )